Flexible job-shop scheduling via graph neural network and deep reinforcement learning
Recently, deep reinforcement learning (DRL) has been applied to learn priority dispatching rules (PDRs) for solving complex scheduling problems. However, the existing works face challenges in dealing with flexibility, which allows an operation to be scheduled on one out of multiple machines and is o...
Saved in:
Main Authors: | , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2023
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/8197 https://ink.library.smu.edu.sg/context/sis_research/article/9200/viewcontent/2022_TII_songwen.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-9200 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-92002023-10-04T05:24:36Z Flexible job-shop scheduling via graph neural network and deep reinforcement learning SONG, Wen CHEN, Xinyang LI, Qiqiang CAO, Zhiguang Recently, deep reinforcement learning (DRL) has been applied to learn priority dispatching rules (PDRs) for solving complex scheduling problems. However, the existing works face challenges in dealing with flexibility, which allows an operation to be scheduled on one out of multiple machines and is often required in practice. Such one-to-many relationship brings additional complexity in both decision making and state representation. This article considers the well-known flexible job-shop scheduling problem and addresses these issues by proposing a novel DRL method to learn high-quality PDRs end to end. The operation selection and the machine assignment are combined as a composite decision. Moreover, based on a novel heterogeneous graph representation of scheduling states, a heterogeneous-graph-neural-network-based architecture is proposed to capture complex relationships among operations and machines. Experiments show that the proposed method outperforms traditional PDRs and is computationally efficient, even on instances of larger scales and different properties unseen in training. 2023-02-01T08:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/8197 info:doi/10.1109/TII.2022.3189725 https://ink.library.smu.edu.sg/context/sis_research/article/9200/viewcontent/2022_TII_songwen.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Flexible job-shop scheduling Graph neural network Deep reinforcement learning Databases and Information Systems |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Flexible job-shop scheduling Graph neural network Deep reinforcement learning Databases and Information Systems |
spellingShingle |
Flexible job-shop scheduling Graph neural network Deep reinforcement learning Databases and Information Systems SONG, Wen CHEN, Xinyang LI, Qiqiang CAO, Zhiguang Flexible job-shop scheduling via graph neural network and deep reinforcement learning |
description |
Recently, deep reinforcement learning (DRL) has been applied to learn priority dispatching rules (PDRs) for solving complex scheduling problems. However, the existing works face challenges in dealing with flexibility, which allows an operation to be scheduled on one out of multiple machines and is often required in practice. Such one-to-many relationship brings additional complexity in both decision making and state representation. This article considers the well-known flexible job-shop scheduling problem and addresses these issues by proposing a novel DRL method to learn high-quality PDRs end to end. The operation selection and the machine assignment are combined as a composite decision. Moreover, based on a novel heterogeneous graph representation of scheduling states, a heterogeneous-graph-neural-network-based architecture is proposed to capture complex relationships among operations and machines. Experiments show that the proposed method outperforms traditional PDRs and is computationally efficient, even on instances of larger scales and different properties unseen in training. |
format |
text |
author |
SONG, Wen CHEN, Xinyang LI, Qiqiang CAO, Zhiguang |
author_facet |
SONG, Wen CHEN, Xinyang LI, Qiqiang CAO, Zhiguang |
author_sort |
SONG, Wen |
title |
Flexible job-shop scheduling via graph neural network and deep reinforcement learning |
title_short |
Flexible job-shop scheduling via graph neural network and deep reinforcement learning |
title_full |
Flexible job-shop scheduling via graph neural network and deep reinforcement learning |
title_fullStr |
Flexible job-shop scheduling via graph neural network and deep reinforcement learning |
title_full_unstemmed |
Flexible job-shop scheduling via graph neural network and deep reinforcement learning |
title_sort |
flexible job-shop scheduling via graph neural network and deep reinforcement learning |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2023 |
url |
https://ink.library.smu.edu.sg/sis_research/8197 https://ink.library.smu.edu.sg/context/sis_research/article/9200/viewcontent/2022_TII_songwen.pdf |
_version_ |
1779157222292455424 |