Simulated annealing with reinforcement learning for the set team orienteering problem with time windows

This research investigates the Set Team Orienteering Problem with Time Windows (STOPTW), a new variant of the well-known Team Orienteering Problem with Time Windows and Set Orienteering Problem. In the STOPTW, customers are grouped into clusters. Each cluster is associated with a profit attainable w...

全面介紹

Saved in:
書目詳細資料
Main Authors: YU, Vincent F., SALSABILA, Nabila Y., LIN, Shih-W, GUNAWAN, Aldy
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2024
主題:
在線閱讀:https://ink.library.smu.edu.sg/sis_research/8265
https://ink.library.smu.edu.sg/context/sis_research/article/9268/viewcontent/SimulatedAnnealing_STOPTW_av.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:This research investigates the Set Team Orienteering Problem with Time Windows (STOPTW), a new variant of the well-known Team Orienteering Problem with Time Windows and Set Orienteering Problem. In the STOPTW, customers are grouped into clusters. Each cluster is associated with a profit attainable when a customer in the cluster is visited within the customer's time window. A Mixed Integer Linear Programming model is formulated for STOPTW to maximizing total profit while adhering to time window constraints. Since STOPTW is an NP-hard problem, a Simulated Annealing with Reinforcement Learning (SARL) algorithm is developed. The proposed SARL incorporates the core concepts of reinforcement learning, utilizing the ε-greedy algorithm to learn the fitness values resulting from neighborhood moves. Numerical experiments are conducted to assess the performance of SARL, comparing the results with those obtained by CPLEX and Simulated Annealing (SA). For small instances, both SARL and SA algorithms outperform CPLEX by obtaining eight optimal solutions and 12 better solutions. For large instances, both algorithms obtain better solutions to 28 out of 29 instances within shorter computational times compared to CPLEX. Overall, SARL outperforms SA by resulting in lower gap percentages within the same computational times. Specifically, SARL outperforms SA in solving 13 large STOPTW benchmark instances. Finally, a sensitivity analysis is conducted to derive managerial insights.