Exemplar-driven top-down saliency detection via deep association
Top-down saliency detection is a knowledge-driven search task. While some previous methods aim to learn this "knowledge" from category-specific data, others transfer existing annotations in a large dataset through appearance matching. In contrast, we propose in this paper a locateby-exempl...
Saved in:
Main Authors: | , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2016
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/8427 https://ink.library.smu.edu.sg/context/sis_research/article/9430/viewcontent/He_Exemplar_Driven_Top_Down_Saliency_CVPR_2016_paper.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | Top-down saliency detection is a knowledge-driven search task. While some previous methods aim to learn this "knowledge" from category-specific data, others transfer existing annotations in a large dataset through appearance matching. In contrast, we propose in this paper a locateby-exemplar strategy. This approach is challenging, as we only use a few exemplars (up to 4) and the appearances among the query object and the exemplars can be very different. To address it, we design a two-stage deep model to learn the intra-class association between the exemplars and query objects. The first stage is for learning object-to-object association, and the second stage is to learn background discrimination. Extensive experimental evaluations show that the proposed method outperforms different baselines and the category-specific models. In addition, we explore the influence of exemplar properties, in terms of exemplar number and quality. Furthermore, we show that the learned model is a universal model and offers great generalization to unseen objects. |
---|