Fine-grained domain adaptive crowd counting via point-derived segmentation

Due to domain shift, a large performance drop is usually observed when a trained crowd counting model is deployed in the wild. While existing domain-adaptive crowd counting methods achieve promising results, they typically regard each crowd image as a whole and reduce domain discrepancies in a holis...

Full description

Saved in:
Bibliographic Details
Main Authors: LIU, Yongtuo, XU, Dan, REN, Sucheng, WU, Hanjie, CAI, Hongmin, HE, Shengfeng
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2023
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/8443
https://ink.library.smu.edu.sg/context/sis_research/article/9446/viewcontent/2108.02980.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:Due to domain shift, a large performance drop is usually observed when a trained crowd counting model is deployed in the wild. While existing domain-adaptive crowd counting methods achieve promising results, they typically regard each crowd image as a whole and reduce domain discrepancies in a holistic manner, thus limiting further improvement of domain adaptation performance. To this end, we propose to untangle domain-invariant crowd and domain-specific background from crowd images and design a fine-grained domain adaption method for crowd counting. Specifically, to disentangle crowd from background, we propose to learn crowd segmentation from point-level crowd counting annotations in a weakly-supervised manner. Based on the derived segmentation, we design a crowd-aware domain adaptation mechanism consisting of two crowd-aware adaptation modules, i.e., Crowd Region Transfer (CRT) and Crowd Density Alignment (CDA). The CRT module is designed to guide crowd features transfer across domains beyond background distractions. The CDA module dedicates to regularising target-domain crowd density generation by its own crowd density distribution. Our method outperforms previous approaches consistently in the widely-used adaptation scenarios.