Disentangling transformer language models as superposed topic models

Topic Modelling is an established research area where the quality of a given topic is measured using coherence metrics. Often, we infer topics from Neural Topic Models (NTM) by interpreting their decoder weights, consisting of top-activated words projected from individual neurons. Transformer-based...

Full description

Saved in:
Bibliographic Details
Main Authors: LIM, Jia Peng, LAUW, Hady Wirawan
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2023
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/8470
https://ink.library.smu.edu.sg/context/sis_research/article/9473/viewcontent/2023.emnlp_main.534__1_.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:Topic Modelling is an established research area where the quality of a given topic is measured using coherence metrics. Often, we infer topics from Neural Topic Models (NTM) by interpreting their decoder weights, consisting of top-activated words projected from individual neurons. Transformer-based Language Models (TLM) similarly consist of decoder weights. However, due to its hypothesised superposition properties, the final logits originating from the residual path are considered uninterpretable. Therefore, we posit that we can interpret TLM as superposed NTM by proposing a novel weight-based, model-agnostic and corpus-agnostic approach to search and disentangle decoder-only TLM, potentially mapping individual neurons to multiple coherent topics. Our results show that it is empirically feasible to disentangle coherent topics from GPT-2 models using the Wikipedia corpus. We validate this approach for GPT-2 models using Zero-Shot Topic Modelling. Finally, we extend the proposed approach to disentangle and analyse LLaMA models.