Generalized logit adjustment: Calibrating fine-tuned models by removing label bias in foundation models
Foundation models like CLIP allow zero-shot transfer on various tasks without additional training data. Yet, the zero-shot performance is less competitive than a fully supervised one. Thus, to enhance the performance, fine-tuning and ensembling are also commonly adopted to better fit the downstream...
Saved in:
Main Authors: | , , , |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2023
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/8473 https://ink.library.smu.edu.sg/context/sis_research/article/9476/viewcontent/Generalized_Logit_Adjustment__Calibrating_Fine_tuned_Models_by_Removing_Label_Bias_in_Foundation_Models__1_.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |