Discovering interpretable latent space directions of gans beyond binary attributes

Generative adversarial networks (GANs) learn to map noise latent vectors to high- fidelity image outputs. It is found that the input latent space shows semantic correlations with the output image space. Recent works aim to interpret the latent space and discover meaningful directions that correspond...

全面介紹

Saved in:
書目詳細資料
Main Authors: YANG, Huiting, CHAI, Liangyu, WEN, Qiang, ZHAO, Shuang, SUN, Zixun, HE, Shengfeng
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2021
主題:
在線閱讀:https://ink.library.smu.edu.sg/sis_research/8521
https://ink.library.smu.edu.sg/context/sis_research/article/9524/viewcontent/Discovering_Interpretable_Latent_Space_Directions_of_GANs_Beyond_Binary_Attributes.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!

相似書籍