High-resolution face swapping via latent semantics disentanglement

We present a novel high-resolution face swapping method using the inherent prior knowledge of a pre-trained GAN model. Although previous research can leverage generative priors to produce high-resolution results, their quality can suffer from the entangled semantics of the latent space. We explicitl...

全面介紹

Saved in:
書目詳細資料
Main Authors: XU, Yangyang, DENG, Bailin, WANG, Junle, JING, Yanqing, PAN, Jia, HE, Shengfeng
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2022
主題:
在線閱讀:https://ink.library.smu.edu.sg/sis_research/8532
https://ink.library.smu.edu.sg/context/sis_research/article/9535/viewcontent/Xu_High_Resolution_Face_Swapping_via_Latent_Semantics_Disentanglement_CVPR_2022_paper.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Singapore Management University
語言: English

相似書籍