High-resolution face swapping via latent semantics disentanglement
We present a novel high-resolution face swapping method using the inherent prior knowledge of a pre-trained GAN model. Although previous research can leverage generative priors to produce high-resolution results, their quality can suffer from the entangled semantics of the latent space. We explicitl...
Saved in:
Main Authors: | XU, Yangyang, DENG, Bailin, WANG, Junle, JING, Yanqing, PAN, Jia, HE, Shengfeng |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2022
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/8532 https://ink.library.smu.edu.sg/context/sis_research/article/9535/viewcontent/Xu_High_Resolution_Face_Swapping_via_Latent_Semantics_Disentanglement_CVPR_2022_paper.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |
相似書籍
-
Faithful extreme rescaling via generative prior reciprocated invertible representations
由: ZHONG, Zhixuan, et al.
出版: (2022) -
Everybody's talkin': let me talk as you want
由: Song, Linsen, et al.
出版: (2022) -
ID preserving face super-resolution generative adversarial networks
由: Li, J., et al.
出版: (2021) -
FACIAL LANDMARK DETECTION TOWARDS ROBUSTNESS
由: XIAO SHENGTAO
出版: (2017) -
Assessing the context effect in emotion recognition of facial expression in the parafovea
由: Yu, Junming
出版: (2025)