CIRI: Curricular inactivation for residue-aware one-shot video inpainting

Video inpainting aims at filling in missing regions of a video. However, when dealing with dynamic scenes with camera or object movements, annotating the inpainting target becomes laborious and impractical. In this paper, we resolve the one-shot video inpainting problem in which only one annotated f...

Full description

Saved in:
Bibliographic Details
Main Authors: ZHENG, Weiying, XU, Cheng, XU, Xuemiao, LIU, Wenxi, HE, Shengfeng
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2023
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/8535
https://ink.library.smu.edu.sg/context/sis_research/article/9538/viewcontent/Zheng_CIRI_Curricular_Inactivation_for_Residue_aware_One_shot_Video_Inpainting_ICCV_2023_paper__1_.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:Video inpainting aims at filling in missing regions of a video. However, when dealing with dynamic scenes with camera or object movements, annotating the inpainting target becomes laborious and impractical. In this paper, we resolve the one-shot video inpainting problem in which only one annotated first frame is provided. A naive solution is to propagate the initial target to the other frames with techniques like object tracking. In this context, the main obstacles are the unreliable propagation and the partially inpainted artifacts due to the inaccurate mask. For the former problem, we propose curricular inactivation to replace the hard masking mechanism for indicating the inpainting target, which is robust to erroneous predictions in long-term video inpainting. For the latter, we explore the properties of inpainting residue and present an online residue removal method in an iterative detect-and-refine manner. Extensive experiments on several real-world datasets demonstrate the quantitative and qualitative superiorities of our proposed method in one-shot video inpainting. More importantly, our method is extremely flexible that can be integrated with arbitrary traditional inpainting models, activating them to perform the reliable one-shot video inpainting task. Video demonstrations can be found in our supplement, and our code can be found at https://github.com/Arise-zwy/CIRI.