FlowPG: Action-constrained policy gradient with normalizing flows
Action-constrained reinforcement learning (ACRL) is a popular approach for solving safety-critical and resource-allocation related decision making problems. A major challenge in ACRL is to ensure agent taking a valid action satisfying constraints in each RL step. Commonly used approach of using a pr...
Saved in:
Main Authors: | BRAHMANAGE JANAKA CHATHURANGA THILAKARATHNA, LING, Jiajing, KUMAR, Akshat |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2023
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/8551 https://ink.library.smu.edu.sg/context/sis_research/article/9554/viewcontent/11351_flowpg_action_constrained_poli.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |
相似書籍
-
Automata-guided control-flow-sensitive fuzz driver generation
由: ZHANG, Cen, et al.
出版: (2023) -
Sample-efficient iterative lower bound optimization of deep reactive policies for planning in continuous MDPs
由: LOW, Siow Meng, et al.
出版: (2022) -
Probabilistic Inference Based Message-Passing for Resource Constrained DCOPs
由: GHOSH, Supriyo, et al.
出版: (2015) -
Constrained multiagent reinforcement learning for large agent population
由: LING, Jiajing, et al.
出版: (2022) -
Towards gradient-based time-series explanations through a spatiotemporal attention network
由: LEE, Min Hun
出版: (2024)