Real: A representative error-driven approach for active learning
Given a limited labeling budget, active learning (al) aims to sample the most informative instances from an unlabeled pool to acquire labels for subsequent model training. To achieve this, al typically measures the informativeness of unlabeled instances based on uncertainty and diversity. However, i...
Saved in:
Main Authors: | CHEN, Cheng, WANG, Yong, LIAO, Lizi, CHEN, Yueguo, DU, Xiaoyong |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2023
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/8586 https://ink.library.smu.edu.sg/context/sis_research/article/9589/viewcontent/real.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |
相似書籍
-
An error driven approach to query segmentation
由: Zhang, W., et al.
出版: (2014) -
Al-based classification methodologies for the modelling of machine tool thermal error
由: Ramesh, R., et al.
出版: (2014) -
Effects of error factors and prior incremental practice on spreadsheet error detection: An experimental study
由: Teo, T.S.H., et al.
出版: (2013) -
Tracking and contour error control in CNC servo systems
由: Ramesh, R., et al.
出版: (2014) -
Nonparametric density deconvolution by weighted kernel estimators
由: Hazelton, M.L., et al.
出版: (2014)