Generative modelling of stochastic actions with arbitrary constraints in reinforcement learning
Many problems in Reinforcement Learning (RL) seek an optimal policy with large discrete multidimensional yet unordered action spaces; these include problems in randomized allocation of resources such as placements of multiple security resources and emergency response units, etc. A challenge in this...
محفوظ في:
المؤلفون الرئيسيون: | CHEN, Changyu, KARUNASENA, Ramesha, NGUYEN, Thanh Hong, SINHA, Arunesh, VARAKANTHAM, Pradeep |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2023
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/8589 https://ink.library.smu.edu.sg/context/sis_research/article/9592/viewcontent/Generative.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
مواد مشابهة
-
Handling long and richly constrained tasks through constrained hierarchical reinforcement learning
بواسطة: LU, Yuxiao, وآخرون
منشور في: (2024) -
Imitate the good and avoid the bad: An incremental approach to safe reinforcement learning
بواسطة: HOANG, Minh Huy, وآخرون
منشور في: (2024) -
Solving online threat screening games using constrained action space reinforcement learning
بواسطة: SHAH, Sanket, وآخرون
منشور في: (2020) -
Knowledge compilation for constrained combinatorial action spaces in reinforcement learning
بواسطة: LING, Jiajing, وآخرون
منشور في: (2023) -
Learning adversary behavior in security games: A PAC model perspective
بواسطة: SINHA, Arunesh, وآخرون
منشور في: (2016)