Multi-view hypergraph contrastive policy learning for conversational recommendation

Conversational recommendation systems (CRS) aim to interactively acquire user preferences and accordingly recommend items to users. Accurately learning the dynamic user preferences is of crucial importance for CRS. Previous works learn the user preferences with pairwise relations from the interactiv...

Full description

Saved in:
Bibliographic Details
Main Authors: ZHAO, Sen, WEI, Wei, MAO, Xian-Ling, ZHU, Shuai: YANG, WEN, Zujie, CHEN, Dangyang, ZHU, Feida
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2023
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/8608
https://ink.library.smu.edu.sg/context/sis_research/article/9611/viewcontent/Multi_view_Hypergraph_Contrastive_Policy_Learning_for_Conversational_Recommendation.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:Conversational recommendation systems (CRS) aim to interactively acquire user preferences and accordingly recommend items to users. Accurately learning the dynamic user preferences is of crucial importance for CRS. Previous works learn the user preferences with pairwise relations from the interactive conversation and item knowledge, while largely ignoring the fact that factors for a relationship in CRS are multiplex. Specifically, the user likes/dislikes the items that satisfy some attributes (Like/Dislike view). Moreover social influence is another important factor that affects user preference towards the item (Social view), while is largely ignored by previous works in CRS. The user preferences from these three views are inherently different but also correlated as a whole. The user preferences from the same views should be more similar than that from different views. The user preferences from Like View should be similar to Social View while different from Dislike View. To this end, we propose a novel model, namely Multi-view Hypergraph Contrastive Policy Learning (MHCPL). Specifically, MHCPL timely chooses useful social information according to the interactive history and builds a dynamic hypergraph with three types of multiplex relations from different views. The multiplex relations in each view are successively connected according to their generation order in the interactive conversation. A hierarchical hypergraph neural network is proposed to learn user preferences by integrating information of the graphical and sequential structure from the dynamic hypergraph. A cross-view contrastive learning module is proposed to maintain the inherent characteristics and the correlations of user preferences from different views. Extensive experiments conducted on benchmark datasets demonstrate that MHCPL outperforms the state-of-the-art methods.