Privacy-enhancing and robust backdoor defense for federated learning on heterogeneous data
Federated learning (FL) allows multiple clients to train deep learning models collaboratively while protecting sensitive local datasets. However, FL has been highly susceptible to security for federated backdoor attacks (FBA) through injecting triggers and privacy for potential data leakage from upl...
محفوظ في:
المؤلفون الرئيسيون: | , , , , |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/8631 https://doi.org/10.1109/TIFS.2023.3326983 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |