A unified variance-reduced accelerated gradient method for convex optimization
We propose a novel randomized incremental gradient algorithm, namely, VAriance-Reduced Accelerated Gradient (Varag), for finite-sum optimization. Equipped with a unified step-size policy that adjusts itself to the value of the conditional number, Varag exhibits the unified optimal rates of convergen...
محفوظ في:
المؤلفون الرئيسيون: | , , |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2019
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/8678 https://ink.library.smu.edu.sg/context/sis_research/article/9681/viewcontent/NeurIPS_2019_a_unified_variance_reduced_accelerated_gradient_method_for_convex_optimization_Paper.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
الملخص: | We propose a novel randomized incremental gradient algorithm, namely, VAriance-Reduced Accelerated Gradient (Varag), for finite-sum optimization. Equipped with a unified step-size policy that adjusts itself to the value of the conditional number, Varag exhibits the unified optimal rates of convergence for solving smooth convex finite-sum problems directly regardless of their strong convexity. Moreover, Varag is the first accelerated randomized incremental gradient method that benefits from the strong convexity of the data-fidelity term to achieve the optimal linear convergence. It also establishes an optimal linear rate of convergence for solving a wide class of problems only satisfying a certain error bound condition rather than strong convexity. Varag can also be extended to solve stochastic finite-sum problems. |
---|