A unified variance-reduced accelerated gradient method for convex optimization

We propose a novel randomized incremental gradient algorithm, namely, VAriance-Reduced Accelerated Gradient (Varag), for finite-sum optimization. Equipped with a unified step-size policy that adjusts itself to the value of the conditional number, Varag exhibits the unified optimal rates of convergen...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: LAN, Guanghui, LI, Zhize, ZHOU, Yi
التنسيق: text
اللغة:English
منشور في: Institutional Knowledge at Singapore Management University 2019
الموضوعات:
الوصول للمادة أونلاين:https://ink.library.smu.edu.sg/sis_research/8678
https://ink.library.smu.edu.sg/context/sis_research/article/9681/viewcontent/NeurIPS_2019_a_unified_variance_reduced_accelerated_gradient_method_for_convex_optimization_Paper.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Singapore Management University
اللغة: English
الوصف
الملخص:We propose a novel randomized incremental gradient algorithm, namely, VAriance-Reduced Accelerated Gradient (Varag), for finite-sum optimization. Equipped with a unified step-size policy that adjusts itself to the value of the conditional number, Varag exhibits the unified optimal rates of convergence for solving smooth convex finite-sum problems directly regardless of their strong convexity. Moreover, Varag is the first accelerated randomized incremental gradient method that benefits from the strong convexity of the data-fidelity term to achieve the optimal linear convergence. It also establishes an optimal linear rate of convergence for solving a wide class of problems only satisfying a certain error bound condition rather than strong convexity. Varag can also be extended to solve stochastic finite-sum problems.