SSRGD: Simple Stochastic Recursive Gradient Descent for escaping saddle points

We analyze stochastic gradient algorithms for optimizing nonconvex problems. In particular, our goal is to find local minima (second-order stationary points) instead of just finding first-order stationary points which may be some bad unstable saddle points. We show that a simple perturbed version of...

全面介紹

Saved in:
書目詳細資料
主要作者: LI, Zhize
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2019
主題:
在線閱讀:https://ink.library.smu.edu.sg/sis_research/8679
https://ink.library.smu.edu.sg/context/sis_research/article/9682/viewcontent/NeurIPS_2019_ssrgd_simple_stochastic_recursive_gradient_descent_for_escaping_saddle_points_Paper.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Singapore Management University
語言: English