Stochastic gradient Hamiltonian Monte Carlo with variance reduction for Bayesian inference
Gradient-based Monte Carlo sampling algorithms, like Langevin dynamics and Hamiltonian Monte Carlo, are important methods for Bayesian inference. In large-scale settings, full-gradients are not affordable and thus stochastic gradients evaluated on mini-batches are used as a replacement. In order to...
Saved in:
Main Authors: | LI, Zhize, ZHANG, Tianyi, CHENG, Shuyu, ZHU, Jun, LI, Jian |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2019
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/8689 https://ink.library.smu.edu.sg/context/sis_research/article/9692/viewcontent/ML19_vrhmc.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |
相似書籍
-
HAMILTONIAN MONTE CARLO VARIANTS
由: AU KHAI XIANG
出版: (2023) -
An adaptive sequential Monte Carlo method for approximate Bayesian computation
由: Del Moral, P., et al.
出版: (2016) -
MONTE CARLO AND VARIANCE REDUCTION METHODS FOR OPTION PRICING
由: CHEN QINRAN
出版: (2017) -
PRACTICAL INVESTIGATIONS ON BAYESIAN INVERSE PROBLEMS
由: MUZAFFER EGE ALPER
出版: (2016) -
Simulation-based Bayesian inference for epidemic models
由: McKinley, T.J., et al.
出版: (2014)