Empirical Likelihood in Missing Data Problems
Missing data is a ubiquitous problem in medical and social sciences. It is well known that inferences based only on the complete data may not only lose efficiency, but may also lead to biased results if the data is not missing completely at random (MCAR). The inverse-probability weighting method pro...
محفوظ في:
المؤلفون الرئيسيون: | QIN, Jing, ZHANG, Biao, LEUNG, Denis H. Y. |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2009
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/soe_research/160 https://ink.library.smu.edu.sg/context/soe_research/article/1159/viewcontent/Empirical_Likelihood_Missing_Data_2009.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
مواد مشابهة
-
Analysing Survey Data with Incomplete Responses by Using a Method Based on Empirical Likelihood
بواسطة: Leung, Denis H. Y., وآخرون
منشور في: (2006) -
Improving semiparametric estimation by using surrogate data
بواسطة: CHEN, Song Xi, وآخرون
منشور في: (2008) -
Information Recovery in a Study with Surrogate Endpoints
بواسطة: CHEN, Song Xi, وآخرون
منشور في: (2003) -
Semiparametric prevalence estimation from a two-phase survey
بواسطة: LEUNG, Denis H. Y., وآخرون
منشور في: (2009) -
Shrinkage empirical likelihood estimator in longitudinal analysis with time-dependent covariates: Application to modeling the health of Filipino children
بواسطة: LEUNG, Denis H. Y., وآخرون
منشور في: (2013)