Analytically Calibrated Box-Cox Percentile Limits for Duration and Event-Time Models

This paper proposes a unified approach to constructing confidence limits for a future percentile duration or event-time. The construction is based on an analytical calibration of the Box-Cox-type “plug-in” percentile limits (PL). The performance of the calibrated Box-Cox PL is investigated using Mon...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: YANG, Zhenlin, TSUI, Albert K.C.
التنسيق: text
اللغة:English
منشور في: Institutional Knowledge at Singapore Management University 2004
الموضوعات:
الوصول للمادة أونلاين:https://ink.library.smu.edu.sg/soe_research/191
https://ink.library.smu.edu.sg/context/soe_research/article/1190/viewcontent/YangTsui_IME2004.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Singapore Management University
اللغة: English
الوصف
الملخص:This paper proposes a unified approach to constructing confidence limits for a future percentile duration or event-time. The construction is based on an analytical calibration of the Box-Cox-type “plug-in” percentile limits (PL). The performance of the calibrated Box-Cox PL is investigated using Monte Carlo experiments. Comparisons are made with PLs that are specifically designed for a particular distribution such as Weibull and lognormal. Excellent performances of the calibrated Box-Cox PL are observed. Simulation based on other popular duration models such as gamma and inverse Gaussian reveal that the proposed PL is robust against distributional assumptions and that it performs much better than the distribution-free PL. An empirical illustration is also provided.