Unit Root Log Periodogram Regression
Log periodogram (LP) regression is shown to be consistent and to have a mixed normal limit distribution when the memory parameter d=1. Gaussian errors are not required. The proof relies on a new result showing that asymptotically infinite collections of discrete Fourier transforms (dft's) of a...
Saved in:
Main Author: | |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2007
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/soe_research/283 https://ink.library.smu.edu.sg/context/soe_research/article/1282/viewcontent/Unit_Root_Log_Periodogram_2007.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.soe_research-1282 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.soe_research-12822018-12-12T08:11:11Z Unit Root Log Periodogram Regression PHILLIPS, Peter C. B. Log periodogram (LP) regression is shown to be consistent and to have a mixed normal limit distribution when the memory parameter d=1. Gaussian errors are not required. The proof relies on a new result showing that asymptotically infinite collections of discrete Fourier transforms (dft's) of a short memory process at the fundamental frequencies in the vicinity of the origin can be treated as asymptotically independent normal variates, provided one does not include too many dft's in the collection. 2007-05-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/soe_research/283 info:doi/10.1016/j.jeconom.2006.05.017 https://ink.library.smu.edu.sg/context/soe_research/article/1282/viewcontent/Unit_Root_Log_Periodogram_2007.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Economics eng Institutional Knowledge at Singapore Management University Asymptotic independence Discrete Fourier transform Fractional integration Log periodogram regression Long memory parameter Nonstationarity Semiparametric estimation Unit root Econometrics |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Asymptotic independence Discrete Fourier transform Fractional integration Log periodogram regression Long memory parameter Nonstationarity Semiparametric estimation Unit root Econometrics |
spellingShingle |
Asymptotic independence Discrete Fourier transform Fractional integration Log periodogram regression Long memory parameter Nonstationarity Semiparametric estimation Unit root Econometrics PHILLIPS, Peter C. B. Unit Root Log Periodogram Regression |
description |
Log periodogram (LP) regression is shown to be consistent and to have a mixed normal limit distribution when the memory parameter d=1. Gaussian errors are not required. The proof relies on a new result showing that asymptotically infinite collections of discrete Fourier transforms (dft's) of a short memory process at the fundamental frequencies in the vicinity of the origin can be treated as asymptotically independent normal variates, provided one does not include too many dft's in the collection. |
format |
text |
author |
PHILLIPS, Peter C. B. |
author_facet |
PHILLIPS, Peter C. B. |
author_sort |
PHILLIPS, Peter C. B. |
title |
Unit Root Log Periodogram Regression |
title_short |
Unit Root Log Periodogram Regression |
title_full |
Unit Root Log Periodogram Regression |
title_fullStr |
Unit Root Log Periodogram Regression |
title_full_unstemmed |
Unit Root Log Periodogram Regression |
title_sort |
unit root log periodogram regression |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2007 |
url |
https://ink.library.smu.edu.sg/soe_research/283 https://ink.library.smu.edu.sg/context/soe_research/article/1282/viewcontent/Unit_Root_Log_Periodogram_2007.pdf |
_version_ |
1770569098833428480 |