Unit Root Log Periodogram Regression

Log periodogram (LP) regression is shown to be consistent and to have a mixed normal limit distribution when the memory parameter d=1. Gaussian errors are not required. The proof relies on a new result showing that asymptotically infinite collections of discrete Fourier transforms (dft's) of a...

Full description

Saved in:
Bibliographic Details
Main Author: PHILLIPS, Peter C. B.
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2007
Subjects:
Online Access:https://ink.library.smu.edu.sg/soe_research/283
https://ink.library.smu.edu.sg/context/soe_research/article/1282/viewcontent/Unit_Root_Log_Periodogram_2007.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
id sg-smu-ink.soe_research-1282
record_format dspace
spelling sg-smu-ink.soe_research-12822018-12-12T08:11:11Z Unit Root Log Periodogram Regression PHILLIPS, Peter C. B. Log periodogram (LP) regression is shown to be consistent and to have a mixed normal limit distribution when the memory parameter d=1. Gaussian errors are not required. The proof relies on a new result showing that asymptotically infinite collections of discrete Fourier transforms (dft's) of a short memory process at the fundamental frequencies in the vicinity of the origin can be treated as asymptotically independent normal variates, provided one does not include too many dft's in the collection. 2007-05-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/soe_research/283 info:doi/10.1016/j.jeconom.2006.05.017 https://ink.library.smu.edu.sg/context/soe_research/article/1282/viewcontent/Unit_Root_Log_Periodogram_2007.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Economics eng Institutional Knowledge at Singapore Management University Asymptotic independence Discrete Fourier transform Fractional integration Log periodogram regression Long memory parameter Nonstationarity Semiparametric estimation Unit root Econometrics
institution Singapore Management University
building SMU Libraries
continent Asia
country Singapore
Singapore
content_provider SMU Libraries
collection InK@SMU
language English
topic Asymptotic independence
Discrete Fourier transform
Fractional integration
Log periodogram regression
Long memory parameter
Nonstationarity
Semiparametric estimation
Unit root
Econometrics
spellingShingle Asymptotic independence
Discrete Fourier transform
Fractional integration
Log periodogram regression
Long memory parameter
Nonstationarity
Semiparametric estimation
Unit root
Econometrics
PHILLIPS, Peter C. B.
Unit Root Log Periodogram Regression
description Log periodogram (LP) regression is shown to be consistent and to have a mixed normal limit distribution when the memory parameter d=1. Gaussian errors are not required. The proof relies on a new result showing that asymptotically infinite collections of discrete Fourier transforms (dft's) of a short memory process at the fundamental frequencies in the vicinity of the origin can be treated as asymptotically independent normal variates, provided one does not include too many dft's in the collection.
format text
author PHILLIPS, Peter C. B.
author_facet PHILLIPS, Peter C. B.
author_sort PHILLIPS, Peter C. B.
title Unit Root Log Periodogram Regression
title_short Unit Root Log Periodogram Regression
title_full Unit Root Log Periodogram Regression
title_fullStr Unit Root Log Periodogram Regression
title_full_unstemmed Unit Root Log Periodogram Regression
title_sort unit root log periodogram regression
publisher Institutional Knowledge at Singapore Management University
publishDate 2007
url https://ink.library.smu.edu.sg/soe_research/283
https://ink.library.smu.edu.sg/context/soe_research/article/1282/viewcontent/Unit_Root_Log_Periodogram_2007.pdf
_version_ 1770569098833428480