Multivariate Stochastic Volatility Models: Bayesian Estimation and Model Comparison

In this paper we show that fully likelihood-based estimation and comparison of multivariate stochastic volatility (SV) models can be easily performed via a freely available Bayesian software called WinBUGS. Moreover, we introduce to the literature several new specifications that are natural extensio...

Full description

Saved in:
Bibliographic Details
Main Authors: YU, Jun, MEYER, Renate
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2006
Subjects:
DIC
Online Access:https://ink.library.smu.edu.sg/soe_research/360
https://ink.library.smu.edu.sg/context/soe_research/article/1359/viewcontent/Multivariate_Stochastic_Volatility_Models_Bayesian_Estimation.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:In this paper we show that fully likelihood-based estimation and comparison of multivariate stochastic volatility (SV) models can be easily performed via a freely available Bayesian software called WinBUGS. Moreover, we introduce to the literature several new specifications that are natural extensions to certain existing models, one of which allows for time-varying correlation coefficients. Ideas are illustrated by fitting, to a bivariate time series data of weekly exchange rates, nine multivariate SV models, including the specifications with Granger causality in volatility, time-varying correlations, heavy-tailed error distributions, additive factor structure, and multiplicative factor structure. Empirical results suggest that the best specifications are those that allow for time-varying correlation coefficients.