Bayesian Hypothesis Testing in Latent Variable Models
Hypothesis testing using Bayes factors (BFs) is known to suffer from several problems in the context of latent variable models. The first problem is computational. Another problem is that BFs are not well defined under the improper prior. In this paper, a new Bayesian method, based on decision theor...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2010
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/soe_research/1233 https://ink.library.smu.edu.sg/context/soe_research/article/2232/viewcontent/BTS07.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | Hypothesis testing using Bayes factors (BFs) is known to suffer from several problems in the context of latent variable models. The first problem is computational. Another problem is that BFs are not well defined under the improper prior. In this paper, a new Bayesian method, based on decision theory and the EM algorithm, is introduced to test a point hypothesis in latent variable models. The new statistic is a by-product of the Bayesian MCMC output and, hence, easy to compute. It is shown that the new statistic is appropriately defined under improper priors because the method employs a continuous loss function. The finite sample properties are examined using simulated data. The method is also illustrated in the context of a one-factor asset pricing model and a stochastic volatility model with jumps using real data. |
---|