A New Bayesian Unit Root Test in Stochastic Volatility Models

A new posterior odds analysis is proposed to test for a unit root in volatility dynamics in the context of stochastic volatility models. This analysis extends the Bayesian unit root test of So and Li (1999, Journal of Business Economic Statistics) in two important ways. First, a numerically more sta...

Full description

Saved in:
Bibliographic Details
Main Authors: LI, Yong, YU, Jun
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2010
Subjects:
Online Access:https://ink.library.smu.edu.sg/soe_research/1240
https://ink.library.smu.edu.sg/context/soe_research/article/2239/viewcontent/Paper_14_2012.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:A new posterior odds analysis is proposed to test for a unit root in volatility dynamics in the context of stochastic volatility models. This analysis extends the Bayesian unit root test of So and Li (1999, Journal of Business Economic Statistics) in two important ways. First, a numerically more stable algorithm is introduced to compute the Bayes factor, taking into account the special structure of the competing models. Owing to its numerical stability, the algorithm overcomes the problem of diverged “size” in the marginal likelihood approach. Second, to improve the “power” of the unit root test, a mixed prior specification with random weights is employed. It is shown that the posterior odds ratio is the by-product of Bayesian estimation and can be easily computed by MCMC methods. A simulation study examines the “size” and “power” performances of the new method. An empirical study, based on time series data covering the subprime crisis, reveals some interesting results.