Model Selection in Validation Sampling Data: An Asymptotic Likelihood-based LASSO Approach
We propose an asymptotic likelihood-based LASSO approach for model selection in regression analysis when data are subject to validation sampling. The method makes use of an initial estimator of the regression coefficients and their asymptotic covariance matrix to form an asymptotic likelihood. This...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2011
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/soe_research/1333 https://ink.library.smu.edu.sg/context/soe_research/article/2332/viewcontent/A21n28.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.soe_research-2332 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.soe_research-23322018-05-14T05:24:58Z Model Selection in Validation Sampling Data: An Asymptotic Likelihood-based LASSO Approach LENG, Chenlei LEUNG, Denis H. Y. We propose an asymptotic likelihood-based LASSO approach for model selection in regression analysis when data are subject to validation sampling. The method makes use of an initial estimator of the regression coefficients and their asymptotic covariance matrix to form an asymptotic likelihood. This ``working'' objective function facilitates the formulation of the LASSO and the implementation of a fast algorithm. Our method circumvents the need to use a likelihood set-up that requires full distributional assumptions about the data. We show that the resulting estimator is consistent in model selection and that the method has lower prediction errors than a model that uses only the validation sample. Furthermore, we show that this formulation gives an optimal estimator in a certain sense. Extensive simulation studies are conducted for the linear regression model, the generalized linear regression model, and the Cox model. Our simulation results support our claims. The method is further applied to a dataset to illustrate its practical use. 2011-01-01T08:00:00Z text application/pdf https://ink.library.smu.edu.sg/soe_research/1333 info:doi/10.5705/ss.2011.029a https://ink.library.smu.edu.sg/context/soe_research/article/2332/viewcontent/A21n28.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Economics eng Institutional Knowledge at Singapore Management University Asymptotic likelihoodbased LASSO LASSO least squaresapproximation validation sampling. Econometrics Economics Statistics and Probability |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Asymptotic likelihoodbased LASSO LASSO least squaresapproximation validation sampling. Econometrics Economics Statistics and Probability |
spellingShingle |
Asymptotic likelihoodbased LASSO LASSO least squaresapproximation validation sampling. Econometrics Economics Statistics and Probability LENG, Chenlei LEUNG, Denis H. Y. Model Selection in Validation Sampling Data: An Asymptotic Likelihood-based LASSO Approach |
description |
We propose an asymptotic likelihood-based LASSO approach for model selection in regression analysis when data are subject to validation sampling. The method makes use of an initial estimator of the regression coefficients and their asymptotic covariance matrix to form an asymptotic likelihood. This ``working'' objective function facilitates the formulation of the LASSO and the implementation of a fast algorithm. Our method circumvents the need to use a likelihood set-up that requires full distributional assumptions about the data. We show that the resulting estimator is consistent in model selection and that the method has lower prediction errors than a model that uses only the validation sample. Furthermore, we show that this formulation gives an optimal estimator in a certain sense. Extensive simulation studies are conducted for the linear regression model, the generalized linear regression model, and the Cox model. Our simulation results support our claims. The method is further applied to a dataset to illustrate its practical use. |
format |
text |
author |
LENG, Chenlei LEUNG, Denis H. Y. |
author_facet |
LENG, Chenlei LEUNG, Denis H. Y. |
author_sort |
LENG, Chenlei |
title |
Model Selection in Validation Sampling Data: An Asymptotic Likelihood-based LASSO Approach |
title_short |
Model Selection in Validation Sampling Data: An Asymptotic Likelihood-based LASSO Approach |
title_full |
Model Selection in Validation Sampling Data: An Asymptotic Likelihood-based LASSO Approach |
title_fullStr |
Model Selection in Validation Sampling Data: An Asymptotic Likelihood-based LASSO Approach |
title_full_unstemmed |
Model Selection in Validation Sampling Data: An Asymptotic Likelihood-based LASSO Approach |
title_sort |
model selection in validation sampling data: an asymptotic likelihood-based lasso approach |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2011 |
url |
https://ink.library.smu.edu.sg/soe_research/1333 https://ink.library.smu.edu.sg/context/soe_research/article/2332/viewcontent/A21n28.pdf |
_version_ |
1770571176087650304 |