Semiparametric GMM Estimation of Spatial Autoregressive Models

We propose semiparametric GMM estimation of semiparametric spatial autoregressive (SAR) models under weak moment conditions. In comparison with the quasi-maximum-likelihood-based semiparametric estimator of Su and Jin (2010), we allow for both heteroscedasticity and spatial dependence in the error t...

Full description

Saved in:
Bibliographic Details
Main Author: SU, Liangjun
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2012
Subjects:
Online Access:https://ink.library.smu.edu.sg/soe_research/1423
https://ink.library.smu.edu.sg/context/soe_research/article/2422/viewcontent/Semi_Parametric_GMM_2013.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
id sg-smu-ink.soe_research-2422
record_format dspace
spelling sg-smu-ink.soe_research-24222018-05-11T06:57:31Z Semiparametric GMM Estimation of Spatial Autoregressive Models SU, Liangjun We propose semiparametric GMM estimation of semiparametric spatial autoregressive (SAR) models under weak moment conditions. In comparison with the quasi-maximum-likelihood-based semiparametric estimator of Su and Jin (2010), we allow for both heteroscedasticity and spatial dependence in the error terms. We derive the limiting distributions of our estimators for both the parametric and nonparametric components in the model and demonstrate the estimator of the parametric component has the usual -asymptotics. When the error term also follows an SAR process, we propose an estimator for the parameter in the SAR error process and derive the joint asymptotic distribution for both spatial parameters. Consistent estimates for the asymptotic variance-covariance matrices of both the parametric and nonparametric components are provided. Monte Carlo simulations indicate that our estimators perform well in finite samples. 2012-04-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/soe_research/1423 info:doi/10.1016/j.jeconom.2011.09.034 https://ink.library.smu.edu.sg/context/soe_research/article/2422/viewcontent/Semi_Parametric_GMM_2013.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Economics eng Institutional Knowledge at Singapore Management University Generalized method of moments Local instruments Nonlinearity Semiparametrics Spatial autoregression Econometrics
institution Singapore Management University
building SMU Libraries
continent Asia
country Singapore
Singapore
content_provider SMU Libraries
collection InK@SMU
language English
topic Generalized method of moments
Local instruments
Nonlinearity
Semiparametrics
Spatial autoregression
Econometrics
spellingShingle Generalized method of moments
Local instruments
Nonlinearity
Semiparametrics
Spatial autoregression
Econometrics
SU, Liangjun
Semiparametric GMM Estimation of Spatial Autoregressive Models
description We propose semiparametric GMM estimation of semiparametric spatial autoregressive (SAR) models under weak moment conditions. In comparison with the quasi-maximum-likelihood-based semiparametric estimator of Su and Jin (2010), we allow for both heteroscedasticity and spatial dependence in the error terms. We derive the limiting distributions of our estimators for both the parametric and nonparametric components in the model and demonstrate the estimator of the parametric component has the usual -asymptotics. When the error term also follows an SAR process, we propose an estimator for the parameter in the SAR error process and derive the joint asymptotic distribution for both spatial parameters. Consistent estimates for the asymptotic variance-covariance matrices of both the parametric and nonparametric components are provided. Monte Carlo simulations indicate that our estimators perform well in finite samples.
format text
author SU, Liangjun
author_facet SU, Liangjun
author_sort SU, Liangjun
title Semiparametric GMM Estimation of Spatial Autoregressive Models
title_short Semiparametric GMM Estimation of Spatial Autoregressive Models
title_full Semiparametric GMM Estimation of Spatial Autoregressive Models
title_fullStr Semiparametric GMM Estimation of Spatial Autoregressive Models
title_full_unstemmed Semiparametric GMM Estimation of Spatial Autoregressive Models
title_sort semiparametric gmm estimation of spatial autoregressive models
publisher Institutional Knowledge at Singapore Management University
publishDate 2012
url https://ink.library.smu.edu.sg/soe_research/1423
https://ink.library.smu.edu.sg/context/soe_research/article/2422/viewcontent/Semi_Parametric_GMM_2013.pdf
_version_ 1770571451244478464