Estimation of Monthly Volatility: An Empirical Comparison of Realized Volatility, GARCH and ACD-ICV Methods
We apply the ACD-ICV method proposed by Tse and Yang (2011) for the estimation of intraday volatility to estimate monthly volatility, and empirically compare this method against the realized volatility (RV) and generalized autoregressive conditional heteroskedasticity (GARCH) methods. Our Monte Carl...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2013
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/soe_research/1476 https://ink.library.smu.edu.sg/context/soe_research/article/2475/viewcontent/2011___02___estimation_of_monthly_volatility.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | We apply the ACD-ICV method proposed by Tse and Yang (2011) for the estimation of intraday volatility to estimate monthly volatility, and empirically compare this method against the realized volatility (RV) and generalized autoregressive conditional heteroskedasticity (GARCH) methods. Our Monte Carlo results show that the ACD-ICV method performs well against the other two methods. Evidence on the Chicago Board Options Exchange volatility index (VIX) shows that it predicts the ACD-ICV volatility estimates better than it predicts the RV estimates. While the RV method is popular for the estimation of monthly volatility, its performance is inferior to the GARCH method. |
---|