Testing Conditional Independence via Empirical Likelihood
We construct two classes of smoothed empirical likelihood ratio tests for the conditional independence hypothesis by writing the null hypothesis as an infinite collection of conditional moment restrictions indexed by a nuisance parameter. One class is based on the CDF; another is based on smoother f...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2013
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/soe_research/1477 https://ink.library.smu.edu.sg/context/soe_research/article/2476/viewcontent/hw_2009_29_11_20testing_20conditional_20independence_20via_20empirical_20likelihood.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | We construct two classes of smoothed empirical likelihood ratio tests for the conditional independence hypothesis by writing the null hypothesis as an infinite collection of conditional moment restrictions indexed by a nuisance parameter. One class is based on the CDF; another is based on smoother functions. We show that the test statistics are asymptotically normal under the null hypothesis and a sequence of Pitman local alternatives. We also show that the tests possess an asymptotic optimality property in terms of average power. Simulations suggest that the tests are well behaved in finite samples. Applications to some economic and financial time series indicate that our tests reveal some interesting nonlinear causal relations which the traditional linear Granger causality test fails to detect. |
---|