Deviance information criterion for comparing VAR models

Vector Autoregression (VAR) has been a standard empirical tool used in macroeconomics and finance. In this paper we discuss how to compare alternative VAR models after they are estimated by Bayesian MCMC methods. In particular we apply a robust version of deviance information criterion (RDIC) recent...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: ZENG, Tao, LI, Yong, YU, Jun
التنسيق: text
اللغة:English
منشور في: Institutional Knowledge at Singapore Management University 2014
الموضوعات:
DIC
الوصول للمادة أونلاين:https://ink.library.smu.edu.sg/soe_research/1584
https://ink.library.smu.edu.sg/context/soe_research/article/2583/viewcontent/DevianceInfoCriterionVAR.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Singapore Management University
اللغة: English
الوصف
الملخص:Vector Autoregression (VAR) has been a standard empirical tool used in macroeconomics and finance. In this paper we discuss how to compare alternative VAR models after they are estimated by Bayesian MCMC methods. In particular we apply a robust version of deviance information criterion (RDIC) recently developed in Li et al. (2014b) to determine the best candidate model. RDIC is a better information criterion than the widely used deviance information criterion (DIC) when latent variables are involved in candidate models. Empirical analysis using US data shows that the optimal model selected by RDIC can be different from that by DIC.