A flexible and automated likelihood based framework for inference in stochastic volatility models
The Laplace approximation is used to perform maximum likelihood estimation of univariate and multivariate stochastic volatility (SV) models. It is shown that the implementation of the Laplace approximation is greatly simplified by the use of a numerical technique known as automatic differentiation (...
محفوظ في:
المؤلفون الرئيسيون: | SKAUG, Hans J., YU, Jun |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2014
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/soe_research/1615 https://ink.library.smu.edu.sg/context/soe_research/article/2614/viewcontent/FlexibleAutomatedLikelihoodStochasticVolatility_2014.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Automated Likelihood Based Inference for Stochastic Volatility Models
بواسطة: Skaug, H., وآخرون
منشور في: (2009) -
A semiparametric stochastic volatility model
بواسطة: YU, Jun
منشور في: (2012) -
A semiparametric stochastic volatility model
بواسطة: YU, Jun
منشور في: (2008) -
Estimating the GARCH Diffusion: Simulated Maximum Likelihood in Continuous Time
بواسطة: KLEPPE, Tore Selland, وآخرون
منشور في: (2010) -
Stimulated Maximum Likelihood Estimation of Continuous Time Stochastic Volatility Models
بواسطة: KLEPPE, Tore Selland, وآخرون
منشور في: (2009)