Testing the Martingale Hypothesis
We propose new tests of the martingale hypothesis based on generalized versions of the Kolmogorov–Smirnov and Cramér–von Mises tests. The tests are distribution-free and allow for a weak drift in the null model. The methods do not require either smoothing parameters or bootstrap resampling for their...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2014
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/soe_research/1633 https://ink.library.smu.edu.sg/context/soe_research/article/2632/viewcontent/2014JBESMG_av.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | We propose new tests of the martingale hypothesis based on generalized versions of the Kolmogorov–Smirnov and Cramér–von Mises tests. The tests are distribution-free and allow for a weak drift in the null model. The methods do not require either smoothing parameters or bootstrap resampling for their implementation and so are well suited to practical work. The article develops limit theory for the tests under the null and shows that the tests are consistent against a wide class of nonlinear, nonmartingale processes. Simulations show that the tests have good finite sample properties in comparison with other tests particularly under conditional heteroscedasticity and mildly explosive alternatives. An empirical application to major exchange rate data finds strong evidence in favor of the martingale hypothesis, confirming much earlier research. |
---|