Semiparametric Estimation in Triangular System Equations with Nonstationarity
A system of multivariate semiparametric nonlinear time series models is studied with possible dependence structures and nonstationarities in the parametric and nonparametric components. The parametric regressors may be endogenous while the nonparametric regressors are assumed to be strictly exogenou...
Saved in:
Main Authors: | , |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2013
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/soe_research/1827 https://ink.library.smu.edu.sg/context/soe_research/article/2826/viewcontent/SemiparametricEstimationTriangularSystem.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |
總結: | A system of multivariate semiparametric nonlinear time series models is studied with possible dependence structures and nonstationarities in the parametric and nonparametric components. The parametric regressors may be endogenous while the nonparametric regressors are assumed to be strictly exogenous. The parametric regressors may be stationary or nonstationary and the nonparametric regressors are nonstationary integrated time series. Semiparametric least squares (SLS) estimation is considered and its asymptotic properties are derived. Due to endogeneity in the parametric regressors, SLS is not consistent for the parametric component and a semiparametric instrumental variable (SIV) method is proposed instead. Under certain regularity conditions, the SIV estimator of the parametric component is shown to have a limiting normal distribution. The rate of convergence in the parametric component depends on the properties of the regressors. The conventional rate may apply even when nonstationarity is involved in both sets of regressors. (C) 2013 Elsevier B.V. All rights reserved. |
---|