Optimal Estimation of Cointegrated Systems with Irrelevant Instruments
It has been known since Phillips and Hansen (1990) that cointegrated systems can be consistently estimated using stochastic trend instruments that are independent of the system variables. A similar phenomenon occurs with deterministically trending instruments. The present work shows that such "...
Saved in:
Main Author: | |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2014
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/soe_research/1829 https://ink.library.smu.edu.sg/context/soe_research/article/2828/viewcontent/OptimalEstimationCointegratedSystemsIrrelevantInstruments_2014.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.soe_research-2828 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.soe_research-28282017-08-05T09:17:33Z Optimal Estimation of Cointegrated Systems with Irrelevant Instruments PHILLIPS, Peter C. B. It has been known since Phillips and Hansen (1990) that cointegrated systems can be consistently estimated using stochastic trend instruments that are independent of the system variables. A similar phenomenon occurs with deterministically trending instruments. The present work shows that such "irrelevant" deterministic trend instruments may be systematically used to produce asymptotically efficient estimates of a cointegrated system. The approach is convenient in practice, involves only linear instrumental variables estimation, and is a straightforward one step procedure with no loss of degrees of freedom in estimation. Simulations reveal that the procedure works well in practice both in terms of point and interval estimation, having little finite sample bias and less finite sample dispersion than other popular cointegrating regression procedures such as reduced rank VAR regression, fully modified least squares, and dynamic OLS. The procedure is a form of maximum likelihood estimation where the likelihood is constructed for data projected onto the trending instruments. This "trend likelihood" is related to the notion of the local Whittle likelihood but avoids frequency domain issues. (C) 2013 Elsevier B.V. All rights reserved. 2014-01-01T08:00:00Z text application/pdf https://ink.library.smu.edu.sg/soe_research/1829 info:doi/10.1016/j.jeconom.2013.08.022 https://ink.library.smu.edu.sg/context/soe_research/article/2828/viewcontent/OptimalEstimationCointegratedSystemsIrrelevantInstruments_2014.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Economics eng Institutional Knowledge at Singapore Management University Asymptotic efficiency Cointegrated system Coverage probability Instrumental variables Irrelevant instrument Karhunen-Loeve representation Optimal estimation Orthonormal basis Sieve estimation of stochastic processes Trend basis Trend likelihood Econometrics |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Asymptotic efficiency Cointegrated system Coverage probability Instrumental variables Irrelevant instrument Karhunen-Loeve representation Optimal estimation Orthonormal basis Sieve estimation of stochastic processes Trend basis Trend likelihood Econometrics |
spellingShingle |
Asymptotic efficiency Cointegrated system Coverage probability Instrumental variables Irrelevant instrument Karhunen-Loeve representation Optimal estimation Orthonormal basis Sieve estimation of stochastic processes Trend basis Trend likelihood Econometrics PHILLIPS, Peter C. B. Optimal Estimation of Cointegrated Systems with Irrelevant Instruments |
description |
It has been known since Phillips and Hansen (1990) that cointegrated systems can be consistently estimated using stochastic trend instruments that are independent of the system variables. A similar phenomenon occurs with deterministically trending instruments. The present work shows that such "irrelevant" deterministic trend instruments may be systematically used to produce asymptotically efficient estimates of a cointegrated system. The approach is convenient in practice, involves only linear instrumental variables estimation, and is a straightforward one step procedure with no loss of degrees of freedom in estimation. Simulations reveal that the procedure works well in practice both in terms of point and interval estimation, having little finite sample bias and less finite sample dispersion than other popular cointegrating regression procedures such as reduced rank VAR regression, fully modified least squares, and dynamic OLS. The procedure is a form of maximum likelihood estimation where the likelihood is constructed for data projected onto the trending instruments. This "trend likelihood" is related to the notion of the local Whittle likelihood but avoids frequency domain issues. (C) 2013 Elsevier B.V. All rights reserved. |
format |
text |
author |
PHILLIPS, Peter C. B. |
author_facet |
PHILLIPS, Peter C. B. |
author_sort |
PHILLIPS, Peter C. B. |
title |
Optimal Estimation of Cointegrated Systems with Irrelevant Instruments |
title_short |
Optimal Estimation of Cointegrated Systems with Irrelevant Instruments |
title_full |
Optimal Estimation of Cointegrated Systems with Irrelevant Instruments |
title_fullStr |
Optimal Estimation of Cointegrated Systems with Irrelevant Instruments |
title_full_unstemmed |
Optimal Estimation of Cointegrated Systems with Irrelevant Instruments |
title_sort |
optimal estimation of cointegrated systems with irrelevant instruments |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2014 |
url |
https://ink.library.smu.edu.sg/soe_research/1829 https://ink.library.smu.edu.sg/context/soe_research/article/2828/viewcontent/OptimalEstimationCointegratedSystemsIrrelevantInstruments_2014.pdf |
_version_ |
1770572936933015552 |