Nonparametric Cointegrating Regression with Endogeneity and Long Memory
This paper explores nonparametric estimation, inference, and specification testing in a nonlinear cointegrating regression model where the structural equation errors are serially dependent and where the regressor is endogenous and may be driven by long memory innovations. Generalizing earlier result...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2016
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/soe_research/1843 https://ink.library.smu.edu.sg/context/soe_research/article/2842/viewcontent/NonparaetricCointregatingRegEndoLongMemory_2014_pp.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.soe_research-2842 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.soe_research-28422020-01-15T02:05:24Z Nonparametric Cointegrating Regression with Endogeneity and Long Memory WANG, Qiying PHILLIPS, Peter C. B. This paper explores nonparametric estimation, inference, and specification testing in a nonlinear cointegrating regression model where the structural equation errors are serially dependent and where the regressor is endogenous and may be driven by long memory innovations. Generalizing earlier results of Wang and Phillips (2009a, b, Econometric Theory 25, 710-738, Econometrica 77, 1901-1948), the conventional nonparametric local level kernel estimator is shown to be consistent and asymptotically (mixed) normal in these cases, thereby opening up inference by conventional nonparametric methods to a wide class of potentially nonlinear cointegrated relations. New results on the consistency of parametric estimates in nonlinear cointegrating regressions are provided, extending earlier research on parametric nonlinear regression and providing primitive conditions for parametric model testing. A model specification test is studied and confirmed to provide a valid mechanism for testing parametric specifications that is robust to endogeneity. But under long memory innovations the test is not pivotal, its convergence rate is parameter dependent, and its limit theory involves the local time of fractional Brownian motion. Simulation results show good performance for the nonparametric kernel estimates in cases of strong endogeneity and long memory, whereas the specification test is shown to be sensitive to the presence of long memory innovations, as predicted by asymptotic theory. 2016-04-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/soe_research/1843 info:doi/10.1017/S0266466614000917 https://ink.library.smu.edu.sg/context/soe_research/article/2842/viewcontent/NonparaetricCointregatingRegEndoLongMemory_2014_pp.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Economics eng Institutional Knowledge at Singapore Management University integrated time-series asymptotic theory whittle estimation inference models heteroskedasticity convergence functionals tests Econometrics Economics |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
integrated time-series asymptotic theory whittle estimation inference models heteroskedasticity convergence functionals tests Econometrics Economics |
spellingShingle |
integrated time-series asymptotic theory whittle estimation inference models heteroskedasticity convergence functionals tests Econometrics Economics WANG, Qiying PHILLIPS, Peter C. B. Nonparametric Cointegrating Regression with Endogeneity and Long Memory |
description |
This paper explores nonparametric estimation, inference, and specification testing in a nonlinear cointegrating regression model where the structural equation errors are serially dependent and where the regressor is endogenous and may be driven by long memory innovations. Generalizing earlier results of Wang and Phillips (2009a, b, Econometric Theory 25, 710-738, Econometrica 77, 1901-1948), the conventional nonparametric local level kernel estimator is shown to be consistent and asymptotically (mixed) normal in these cases, thereby opening up inference by conventional nonparametric methods to a wide class of potentially nonlinear cointegrated relations. New results on the consistency of parametric estimates in nonlinear cointegrating regressions are provided, extending earlier research on parametric nonlinear regression and providing primitive conditions for parametric model testing. A model specification test is studied and confirmed to provide a valid mechanism for testing parametric specifications that is robust to endogeneity. But under long memory innovations the test is not pivotal, its convergence rate is parameter dependent, and its limit theory involves the local time of fractional Brownian motion. Simulation results show good performance for the nonparametric kernel estimates in cases of strong endogeneity and long memory, whereas the specification test is shown to be sensitive to the presence of long memory innovations, as predicted by asymptotic theory. |
format |
text |
author |
WANG, Qiying PHILLIPS, Peter C. B. |
author_facet |
WANG, Qiying PHILLIPS, Peter C. B. |
author_sort |
WANG, Qiying |
title |
Nonparametric Cointegrating Regression with Endogeneity and Long Memory |
title_short |
Nonparametric Cointegrating Regression with Endogeneity and Long Memory |
title_full |
Nonparametric Cointegrating Regression with Endogeneity and Long Memory |
title_fullStr |
Nonparametric Cointegrating Regression with Endogeneity and Long Memory |
title_full_unstemmed |
Nonparametric Cointegrating Regression with Endogeneity and Long Memory |
title_sort |
nonparametric cointegrating regression with endogeneity and long memory |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2016 |
url |
https://ink.library.smu.edu.sg/soe_research/1843 https://ink.library.smu.edu.sg/context/soe_research/article/2842/viewcontent/NonparaetricCointregatingRegEndoLongMemory_2014_pp.pdf |
_version_ |
1770572979723304960 |