Modeling transaction data of trade direction and estimation of probability of informed trading
This paper implements the Asymmetric AutoregressiveConditional Duration (AACD) model of Bauwens and Giot (2003) to analyzeirregularly spaced transaction data of trade direction, namely buy versus sellorders. We examine the influence of lagged transaction duration, lagged volumeand lagged trade direc...
محفوظ في:
المؤلفون الرئيسيون: | TAY, Anthony S., TING, Christopher, TSE, Yiu Kuen, WARACHKA, Mitch |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2007
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/soe_research/1899 https://ink.library.smu.edu.sg/context/soe_research/article/2898/viewcontent/ModelingTransactionData.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Using high-frequency transaction data to estimate the probability of informed trading
بواسطة: TAY, Anthony S., وآخرون
منشور في: (2009) -
Using High-Frequency Transaction Data to Estimate the Probability of Informed Trading
بواسطة: Tay, Anthony S., وآخرون
منشور في: (2009) -
Estimation of time-varying adjusted probability of informed trading and probability of symmetric order-flow shock
بواسطة: PREVE, Daniel, وآخرون
منشور في: (2013) -
Transaction-data analysis of marked durations and their implications for market microstructure
بواسطة: TAY, Anthony S., وآخرون
منشور في: (2004) -
Estimation of Monthly Volatility: An Empirical Comparison of Realized Volatility, GARCH and ACD-ICV Methods
بواسطة: LIU, Shouwei, وآخرون
منشور في: (2013)