Deviance information criterion for Bayesian model selection: Justification and variation
Deviance information criterion (DIC) has been extensively used for making Bayesian model selection. It is a Bayesian version of AIC and chooses a model that gives the smallest expected Kullback-Leibler divergence between the data generating process (DGP) and a predictive distribution asymptotically....
Saved in:
Main Authors: | LI, Yong, Jun YU, ZENG, Tao |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2017
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/soe_research/1927 https://ink.library.smu.edu.sg/context/soe_research/article/2926/viewcontent/DICTheory10.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |
相似書籍
-
Integrated deviance information criterion for latent variable models
由: LI, Yong, et al.
出版: (2018) -
Robust Deviance Information Criterion for Latent Variable Models
由: LI, Yong, et al.
出版: (2012) -
Deviance information criterion for latent variable models and misspecified models
由: LI, Yong, et al.
出版: (2020) -
Improved confidence intervals for a binomial parameter using the Bayesian method
由: Lu, W.-S.
出版: (2014) -
Deviance information criterion for comparing VAR models
由: ZENG, Tao, et al.
出版: (2014)