Discrete choice modeling with nonstationary panels applied to exchange rate regime choice
This paper develops a regression limit theory for discrete choice nonstationary panels with large cross section (N) and time series (T) dimensions. Some results emerging from this theory are directly applicable in the wider context of M-estimation. This includes an extension of work by Wooldridge [W...
Saved in:
Main Author: | |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2009
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/soe_research/1950 https://ink.library.smu.edu.sg/context/soe_research/article/2949/viewcontent/DiscreteChoiceModelingNonStationaryPanels_2009.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.soe_research-2949 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.soe_research-29492017-04-10T06:19:00Z Discrete choice modeling with nonstationary panels applied to exchange rate regime choice JIN, Sainan This paper develops a regression limit theory for discrete choice nonstationary panels with large cross section (N) and time series (T) dimensions. Some results emerging from this theory are directly applicable in the wider context of M-estimation. This includes an extension of work by Wooldridge [Wooldridge, J.M., 1994. Estimation and Inference for Dependent Processes. In: Engle, R.F., McFadden, D.L. (Eds.). Handbook of Econometrics, vol. 4, North-Holland, Amsterdam] on the limit theory of local extremum estimators to multi-indexed processes in nonlinear nonstationary panel data models. It is shown that the maximum likelihood (ML) estimator is consistent without an incidental parameters problem and has a limit theory with a fast rate of convergence N T (in the stationary case, the rate is N T) for the regression coefficients and thresholds, and a normal limit distribution. In contrast, the limit distribution is known to be mixed normal in time series modeling, as shown in [Park, J.Y., Phillips, P.C.B., 2000, Nonstationary binary choice. Econometrica, 68, 1249-1280] (hereafter PP), and [Phillips, P.C.B., Jin, S., Hu, L., 2007. Nonstationary discrete choice: A corrigendum and addendum. Journal of Econometrics 141(2), 1115-1130] (hereafter, PJH). The approach is applied to exchange rate regime choice by monetary authorities, and we provide an analysis of the empirical phenomenon known as "fear of floating". 2009-06-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/soe_research/1950 info:doi/10.1016/j.jeconom.2008.12.009 https://ink.library.smu.edu.sg/context/soe_research/article/2949/viewcontent/DiscreteChoiceModelingNonStationaryPanels_2009.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Economics eng Institutional Knowledge at Singapore Management University Brownian local time Discrete choice model Exchange rate regime Fear of floating Fixed effects Joint limits Econometrics Finance |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Brownian local time Discrete choice model Exchange rate regime Fear of floating Fixed effects Joint limits Econometrics Finance |
spellingShingle |
Brownian local time Discrete choice model Exchange rate regime Fear of floating Fixed effects Joint limits Econometrics Finance JIN, Sainan Discrete choice modeling with nonstationary panels applied to exchange rate regime choice |
description |
This paper develops a regression limit theory for discrete choice nonstationary panels with large cross section (N) and time series (T) dimensions. Some results emerging from this theory are directly applicable in the wider context of M-estimation. This includes an extension of work by Wooldridge [Wooldridge, J.M., 1994. Estimation and Inference for Dependent Processes. In: Engle, R.F., McFadden, D.L. (Eds.). Handbook of Econometrics, vol. 4, North-Holland, Amsterdam] on the limit theory of local extremum estimators to multi-indexed processes in nonlinear nonstationary panel data models. It is shown that the maximum likelihood (ML) estimator is consistent without an incidental parameters problem and has a limit theory with a fast rate of convergence N T (in the stationary case, the rate is N T) for the regression coefficients and thresholds, and a normal limit distribution. In contrast, the limit distribution is known to be mixed normal in time series modeling, as shown in [Park, J.Y., Phillips, P.C.B., 2000, Nonstationary binary choice. Econometrica, 68, 1249-1280] (hereafter PP), and [Phillips, P.C.B., Jin, S., Hu, L., 2007. Nonstationary discrete choice: A corrigendum and addendum. Journal of Econometrics 141(2), 1115-1130] (hereafter, PJH). The approach is applied to exchange rate regime choice by monetary authorities, and we provide an analysis of the empirical phenomenon known as "fear of floating". |
format |
text |
author |
JIN, Sainan |
author_facet |
JIN, Sainan |
author_sort |
JIN, Sainan |
title |
Discrete choice modeling with nonstationary panels applied to exchange rate regime choice |
title_short |
Discrete choice modeling with nonstationary panels applied to exchange rate regime choice |
title_full |
Discrete choice modeling with nonstationary panels applied to exchange rate regime choice |
title_fullStr |
Discrete choice modeling with nonstationary panels applied to exchange rate regime choice |
title_full_unstemmed |
Discrete choice modeling with nonstationary panels applied to exchange rate regime choice |
title_sort |
discrete choice modeling with nonstationary panels applied to exchange rate regime choice |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2009 |
url |
https://ink.library.smu.edu.sg/soe_research/1950 https://ink.library.smu.edu.sg/context/soe_research/article/2949/viewcontent/DiscreteChoiceModelingNonStationaryPanels_2009.pdf |
_version_ |
1770573374524751872 |