Granger causality and structural causality in cross-section and panel data

Granger noncausality in distribution is fundamentally a probabilistic conditional independence notion that can be applied not only to time series data but also to cross-section and panel data. In this paper, we provide a natural definition of structural causality in cross-section and panel data and...

Full description

Saved in:
Bibliographic Details
Main Authors: LU, Xun, SU, Liangjun, WHITE, Halbert
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2017
Subjects:
Online Access:https://ink.library.smu.edu.sg/soe_research/1961
https://ink.library.smu.edu.sg/context/soe_research/article/2960/viewcontent/ET2017_Lu_Su_White_afv_cross.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:Granger noncausality in distribution is fundamentally a probabilistic conditional independence notion that can be applied not only to time series data but also to cross-section and panel data. In this paper, we provide a natural definition of structural causality in cross-section and panel data and forge a direct link between Granger (G-) causality and structural causality under a key conditional exogeneity assumption. To put it simply, when structural effects are well defined and identifiable, G-non-causality follows from structural noncausality, and with suitable conditions (e.g., separability or monotonicity), structural causality also implies G-causality. This justifies using tests of G-non-causality to test for structural noncausality under the key conditional exogeneity assumption for both cross-section and panel data. We pay special attention to heterogeneous populations, allowing both structural heterogeneity and distributional heterogeneity. Most of our results are obtained for the general case, without assuming linearity, monotonicity in observables or unobservables, or separability between observed and unobserved variables in the structural relations.