A class of nonlinear stochastic volatility models
This paper proposes a class of nonlinear stochastic volatility models based on the Box-Cox transformation which offers an alternative to the one introduced in Andersen (1994). The proposed class encompasses many parametric stochastic volatility models that have appeared in the literature, including...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2002
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/soe_research/2122 https://ink.library.smu.edu.sg/context/soe_research/article/3122/viewcontent/SSRN_id307731__1_.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.soe_research-3122 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.soe_research-31222017-12-29T07:35:23Z A class of nonlinear stochastic volatility models YU, Jun YANG, Zhenlin This paper proposes a class of nonlinear stochastic volatility models based on the Box-Cox transformation which offers an alternative to the one introduced in Andersen (1994). The proposed class encompasses many parametric stochastic volatility models that have appeared in the literature, including the well known lognormal stochastic volatility model, and has an advantage in the ease with which different specifications on stochastic volatility can be tested. In addition, the functional form of transformation which induces marginal normality of volatility is obtained as a byproduct of this general way of modeling stochastic volatility. The efficient method of moments approach is used to estimate model parameters. Empirical results reveal that the lognormal stochastic volatility model is rejected for daily index return data but not for daily individual stock return data. As a consequence, the stock volatility can be well described by the lognormal distribution as its marginal distribution, consistent with the result found in a recent literature (cf Andersen et al (2001a)). However, the index volatility does not follow the lognormal distribution as its marginal distribution. 2002-04-01T08:00:00Z text application/pdf https://ink.library.smu.edu.sg/soe_research/2122 info:doi/10.2139/ssrn.307731 https://ink.library.smu.edu.sg/context/soe_research/article/3122/viewcontent/SSRN_id307731__1_.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Economics eng Institutional Knowledge at Singapore Management University Box-Cox Transformation GARCH EMM Stochastic Volatility Finance |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Box-Cox Transformation GARCH EMM Stochastic Volatility Finance |
spellingShingle |
Box-Cox Transformation GARCH EMM Stochastic Volatility Finance YU, Jun YANG, Zhenlin A class of nonlinear stochastic volatility models |
description |
This paper proposes a class of nonlinear stochastic volatility models based on the Box-Cox transformation which offers an alternative to the one introduced in Andersen (1994). The proposed class encompasses many parametric stochastic volatility models that have appeared in the literature, including the well known lognormal stochastic volatility model, and has an advantage in the ease with which different specifications on stochastic volatility can be tested. In addition, the functional form of transformation which induces marginal normality of volatility is obtained as a byproduct of this general way of modeling stochastic volatility. The efficient method of moments approach is used to estimate model parameters. Empirical results reveal that the lognormal stochastic volatility model is rejected for daily index return data but not for daily individual stock return data. As a consequence, the stock volatility can be well described by the lognormal distribution as its marginal distribution, consistent with the result found in a recent literature (cf Andersen et al (2001a)). However, the index volatility does not follow the lognormal distribution as its marginal distribution. |
format |
text |
author |
YU, Jun YANG, Zhenlin |
author_facet |
YU, Jun YANG, Zhenlin |
author_sort |
YU, Jun |
title |
A class of nonlinear stochastic volatility models |
title_short |
A class of nonlinear stochastic volatility models |
title_full |
A class of nonlinear stochastic volatility models |
title_fullStr |
A class of nonlinear stochastic volatility models |
title_full_unstemmed |
A class of nonlinear stochastic volatility models |
title_sort |
class of nonlinear stochastic volatility models |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2002 |
url |
https://ink.library.smu.edu.sg/soe_research/2122 https://ink.library.smu.edu.sg/context/soe_research/article/3122/viewcontent/SSRN_id307731__1_.pdf |
_version_ |
1770573876976156672 |