Estimating a transformation and its effect on Box-Cox T-ratio
This article concerns i) the stochastic behavior of the Box-Cox transformation estimator and ii) the effect of estimating a transformation on the Box-CoxT-ratio used for the post-transformation analysis. It is shown that the transformation estimator depends on three factors: the model structure, the...
Saved in:
Main Author: | |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
1999
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/soe_research/2152 https://ink.library.smu.edu.sg/context/soe_research/article/3152/viewcontent/Yang_Test_Box_Cox.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | This article concerns i) the stochastic behavior of the Box-Cox transformation estimator and ii) the effect of estimating a transformation on the Box-CoxT-ratio used for the post-transformation analysis. It is shown that the transformation estimator depends on three factors: the model structure, the mean-spread and the error standard deviation σ0. In general, a structured model is able to estimate the transformation very well; an unstructured model can do well also unless the mean-spread and σ0 are both small; and a one-mean mode can give a poor-estimate if σ0 is small. When the sample is not large, it is shown that the unconditional effect of estimating a transformation on the Box-CoxT-ratio is generally small, and the “conditional” effect is also negligible in most of the situations except the case of one-way ANOVA with small σ0. Extensive Monte Carlo simulations are performed to support the theoretical findings. |
---|