Testing linearity using power transforms of regressors
We develop a method of testing linearity using power transforms of regressors, allowing for stationary processes and time trends. The linear model is a simplifying hypothesis that derives from the power transform model in three different ways, each producing its own identification problem. We call t...
Saved in:
Main Authors: | , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2015
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/soe_research/2168 https://ink.library.smu.edu.sg/context/soe_research/article/3168/viewcontent/Testing_linearity_using_power_transforms_of_regressors.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.soe_research-3168 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.soe_research-31682018-05-28T01:11:03Z Testing linearity using power transforms of regressors BAEK, Yae In CHO, Jin Seo PHILLIPS, Peter C. B. We develop a method of testing linearity using power transforms of regressors, allowing for stationary processes and time trends. The linear model is a simplifying hypothesis that derives from the power transform model in three different ways, each producing its own identification problem. We call this modeling difficulty the trifold identification problem and show that it may be overcome using a test based on the quasi-likelihood ratio (QLR) statistic. More specifically, the QLR statistic may be approximated under each identification problem and the separate null approximations may be combined to produce a composite approximation that embodies the linear model hypothesis. The limit theory for the QLR test statistic depends on a Gaussian stochastic process. In the important special case of a linear time trend regressor and martingale difference errors asymptotic critical values of the test are provided. Test power is analyzed and an empirical application to crop-yield distributions is provided. The paper also considers generalizations of the Box-Cox transformation, which are associated with the QLR test statistic. (C) 2015 Elsevier B.V. All rights reserved. 2015-01-01T08:00:00Z text application/pdf https://ink.library.smu.edu.sg/soe_research/2168 info:doi/10.1016/j.jeconom.2015.03.041 https://ink.library.smu.edu.sg/context/soe_research/article/3168/viewcontent/Testing_linearity_using_power_transforms_of_regressors.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Economics eng Institutional Knowledge at Singapore Management University Box-Cox transform Gaussian stochastic process Neglected nonlinearity Power transformation Quasi-likelihood ratio test Trend exponent Trifold identification problem Econometrics |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Box-Cox transform Gaussian stochastic process Neglected nonlinearity Power transformation Quasi-likelihood ratio test Trend exponent Trifold identification problem Econometrics |
spellingShingle |
Box-Cox transform Gaussian stochastic process Neglected nonlinearity Power transformation Quasi-likelihood ratio test Trend exponent Trifold identification problem Econometrics BAEK, Yae In CHO, Jin Seo PHILLIPS, Peter C. B. Testing linearity using power transforms of regressors |
description |
We develop a method of testing linearity using power transforms of regressors, allowing for stationary processes and time trends. The linear model is a simplifying hypothesis that derives from the power transform model in three different ways, each producing its own identification problem. We call this modeling difficulty the trifold identification problem and show that it may be overcome using a test based on the quasi-likelihood ratio (QLR) statistic. More specifically, the QLR statistic may be approximated under each identification problem and the separate null approximations may be combined to produce a composite approximation that embodies the linear model hypothesis. The limit theory for the QLR test statistic depends on a Gaussian stochastic process. In the important special case of a linear time trend regressor and martingale difference errors asymptotic critical values of the test are provided. Test power is analyzed and an empirical application to crop-yield distributions is provided. The paper also considers generalizations of the Box-Cox transformation, which are associated with the QLR test statistic. (C) 2015 Elsevier B.V. All rights reserved. |
format |
text |
author |
BAEK, Yae In CHO, Jin Seo PHILLIPS, Peter C. B. |
author_facet |
BAEK, Yae In CHO, Jin Seo PHILLIPS, Peter C. B. |
author_sort |
BAEK, Yae In |
title |
Testing linearity using power transforms of regressors |
title_short |
Testing linearity using power transforms of regressors |
title_full |
Testing linearity using power transforms of regressors |
title_fullStr |
Testing linearity using power transforms of regressors |
title_full_unstemmed |
Testing linearity using power transforms of regressors |
title_sort |
testing linearity using power transforms of regressors |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2015 |
url |
https://ink.library.smu.edu.sg/soe_research/2168 https://ink.library.smu.edu.sg/context/soe_research/article/3168/viewcontent/Testing_linearity_using_power_transforms_of_regressors.pdf |
_version_ |
1770574124057362432 |