Unified M-estimation of fixed-effects spatial dynamic models with short panels

It is well known that quasi maximum likelihood (QML) estimation of dynamic panel data (DPD) models with short panels depends on the assumptions on the initial values, and a wrong treatment of them will result in inconsistency and serious bias. The same issues apply to spatial DPD (SDPD) models with...

Full description

Saved in:
Bibliographic Details
Main Author: YANG, Zhenlin
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2018
Subjects:
Online Access:https://ink.library.smu.edu.sg/soe_research/2282
https://ink.library.smu.edu.sg/context/soe_research/article/3281/viewcontent/Unified_M_estimation_pp.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:It is well known that quasi maximum likelihood (QML) estimation of dynamic panel data (DPD) models with short panels depends on the assumptions on the initial values, and a wrong treatment of them will result in inconsistency and serious bias. The same issues apply to spatial DPD (SDPD) models with short panels. In this paper, a unified Mestimation method is proposed for estimating the fixed-effects SDPD models containing three major types of spatial effects, namely spatial lag, spatial error and space-time lag. The method is free from the specification of the distribution of the initial observations and robust against nonnormality of the errors. Consistency and asymptotic normality of the proposed M-estimator are established. A martingale difference representation of the underlying estimating functions is developed, which leads to an initial condition free estimate of the variance of the M-estimators. Monte Carlo results show that the proposed methods have excellent finite sample performance.