Linear programming-based estimators in simple linear regression
In this paper we introduce a linear programming estimator (LPE) for the slope parameter in a constrained linear regression model with a single regressor. The LPE is interesting because it can be superconsistent in the presence of an endogenous regressor and, hence, preferable to the ordinary least s...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2011
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/soe_research/2332 https://ink.library.smu.edu.sg/context/soe_research/article/3331/viewcontent/Linear_Programming_Based_Estimators_in_S.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.soe_research-3331 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.soe_research-33312020-01-09T06:22:09Z Linear programming-based estimators in simple linear regression PREVE, Daniel P. A. MEDEIROS, Marcelo C. In this paper we introduce a linear programming estimator (LPE) for the slope parameter in a constrained linear regression model with a single regressor. The LPE is interesting because it can be superconsistent in the presence of an endogenous regressor and, hence, preferable to the ordinary least squares estimator (LSE). Two different cases are considered as we investigate the statistical properties of the LPE. In the first case, the regressor is assumed to be fixed in repeated samples. In the second, the regressor is stochastic and potentially endogenous. For both cases the strong consistency and exact finite-sample distribution of the LPE is established. Conditions under which the LPE is consistent in the presence of serially correlated, heteroskedastic errors are also given. Finally, we describe how the LPE can be extended to the case with multiple regressors and conjecture that the extended estimator is consistent under conditions analogous to the ones given herein. Finite-sample properties of the LPE and extended LPE in comparison to the LSE and instrumental variable estimator (IVE) are investigated in a simulation study. One advantage of the LPE is that it does not require an instrument. 2011-11-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/soe_research/2332 info:doi/10.1016/j.jeconom.2011.05.011 https://ink.library.smu.edu.sg/context/soe_research/article/3331/viewcontent/Linear_Programming_Based_Estimators_in_S.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Economics eng Institutional Knowledge at Singapore Management University Econometrics |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Econometrics |
spellingShingle |
Econometrics PREVE, Daniel P. A. MEDEIROS, Marcelo C. Linear programming-based estimators in simple linear regression |
description |
In this paper we introduce a linear programming estimator (LPE) for the slope parameter in a constrained linear regression model with a single regressor. The LPE is interesting because it can be superconsistent in the presence of an endogenous regressor and, hence, preferable to the ordinary least squares estimator (LSE). Two different cases are considered as we investigate the statistical properties of the LPE. In the first case, the regressor is assumed to be fixed in repeated samples. In the second, the regressor is stochastic and potentially endogenous. For both cases the strong consistency and exact finite-sample distribution of the LPE is established. Conditions under which the LPE is consistent in the presence of serially correlated, heteroskedastic errors are also given. Finally, we describe how the LPE can be extended to the case with multiple regressors and conjecture that the extended estimator is consistent under conditions analogous to the ones given herein. Finite-sample properties of the LPE and extended LPE in comparison to the LSE and instrumental variable estimator (IVE) are investigated in a simulation study. One advantage of the LPE is that it does not require an instrument. |
format |
text |
author |
PREVE, Daniel P. A. MEDEIROS, Marcelo C. |
author_facet |
PREVE, Daniel P. A. MEDEIROS, Marcelo C. |
author_sort |
PREVE, Daniel P. A. |
title |
Linear programming-based estimators in simple linear regression |
title_short |
Linear programming-based estimators in simple linear regression |
title_full |
Linear programming-based estimators in simple linear regression |
title_fullStr |
Linear programming-based estimators in simple linear regression |
title_full_unstemmed |
Linear programming-based estimators in simple linear regression |
title_sort |
linear programming-based estimators in simple linear regression |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2011 |
url |
https://ink.library.smu.edu.sg/soe_research/2332 https://ink.library.smu.edu.sg/context/soe_research/article/3331/viewcontent/Linear_Programming_Based_Estimators_in_S.pdf |
_version_ |
1770574974088642560 |