Kernel-based Inference in time-varying coefficient cointegrating regression
This paper studies nonlinear cointegrating models with time-varying coefficients and multiple nonstationary regressors using classic kernel smoothing methods to estimate the coefficient functions. Extending earlier work on nonstationary kernel regression to take account of practical features of the...
Saved in:
Main Authors: | LI, Degui, PHILLIPS, Peter C. B., GAO, Jiti |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2020
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/soe_research/2386 https://ink.library.smu.edu.sg/context/soe_research/article/3385/viewcontent/Kernel_based_Inference_time_varying_ccr_sv.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Uniform consistency of nonstationary kernel-weighted sample covariances for nonparametric regression
由: LI, Degui, et al.
出版: (2016) -
Estimating smooth structural change in cointegration models
由: Peter C. B. PHILLIPS,, et al.
出版: (2017) -
When bias contributes to variance: True limit theory in functional coefficient cointegrating regression
由: PHILLIPS, Peter C. B., et al.
出版: (2023) -
Adaptive semi-varying coefficient model selection
由: Hu, T., et al.
出版: (2014) -
A new approach to robust inference in cointegration
由: JIN, Sainan, et al.
出版: (2005)