In-fill asymptotic theory for structural break point in autoregressions

This article obtains the exact distribution of the maximum likelihood estimator of structural break point in the Ornstein-Uhlenbeck process when a continuous record is available. The exact distribution is asymmetric, tri-modal, dependent on the initial condition. These three properties are also foun...

Full description

Saved in:
Bibliographic Details
Main Authors: JIANG, Liang, WANG, Xiaohu, Jun YU
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2020
Subjects:
Online Access:https://ink.library.smu.edu.sg/soe_research/2433
https://ink.library.smu.edu.sg/context/soe_research/article/3432/viewcontent/In_fill_ER2020_av.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
id sg-smu-ink.soe_research-3432
record_format dspace
spelling sg-smu-ink.soe_research-34322021-11-16T06:02:14Z In-fill asymptotic theory for structural break point in autoregressions JIANG, Liang WANG, Xiaohu Jun YU, This article obtains the exact distribution of the maximum likelihood estimator of structural break point in the Ornstein-Uhlenbeck process when a continuous record is available. The exact distribution is asymmetric, tri-modal, dependent on the initial condition. These three properties are also found in the finite sample distribution of the least squares (LS) estimator of structural break point in autoregressive (AR) models. Motivated by these observations, the article then develops an in-fill asymptotic theory for the LS estimator of structural break point in the AR(1) coefficient. The in-fill asymptotic distribution is also asymmetric, tri-modal, dependent on the initial condition, and delivers excellent approximations to the finite sample distribution. Unlike the long-span asymptotic theory, which depends on the underlying AR roots and hence is tailor-made but is only available in a rather limited number of cases, the in-fill asymptotic theory is continuous in the underlying roots. Monte Carlo studies show that the in-fill asymptotic theory performs better than the long-span asymptotic theory for cases where the long-span theory is available and performs very well for cases where no long-span theory is available. The article also proposes to use the highest density region to construct confidence intervals for structural break point. 2020-07-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/soe_research/2433 info:doi/10.1080/07474938.2020.1788822 https://ink.library.smu.edu.sg/context/soe_research/article/3432/viewcontent/In_fill_ER2020_av.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Economics eng Institutional Knowledge at Singapore Management University Asymmetry exact distribution highest density region long-span asymptotics in-fill asymptotics trimodality Econometrics
institution Singapore Management University
building SMU Libraries
continent Asia
country Singapore
Singapore
content_provider SMU Libraries
collection InK@SMU
language English
topic Asymmetry
exact distribution
highest density region
long-span asymptotics
in-fill asymptotics
trimodality
Econometrics
spellingShingle Asymmetry
exact distribution
highest density region
long-span asymptotics
in-fill asymptotics
trimodality
Econometrics
JIANG, Liang
WANG, Xiaohu
Jun YU,
In-fill asymptotic theory for structural break point in autoregressions
description This article obtains the exact distribution of the maximum likelihood estimator of structural break point in the Ornstein-Uhlenbeck process when a continuous record is available. The exact distribution is asymmetric, tri-modal, dependent on the initial condition. These three properties are also found in the finite sample distribution of the least squares (LS) estimator of structural break point in autoregressive (AR) models. Motivated by these observations, the article then develops an in-fill asymptotic theory for the LS estimator of structural break point in the AR(1) coefficient. The in-fill asymptotic distribution is also asymmetric, tri-modal, dependent on the initial condition, and delivers excellent approximations to the finite sample distribution. Unlike the long-span asymptotic theory, which depends on the underlying AR roots and hence is tailor-made but is only available in a rather limited number of cases, the in-fill asymptotic theory is continuous in the underlying roots. Monte Carlo studies show that the in-fill asymptotic theory performs better than the long-span asymptotic theory for cases where the long-span theory is available and performs very well for cases where no long-span theory is available. The article also proposes to use the highest density region to construct confidence intervals for structural break point.
format text
author JIANG, Liang
WANG, Xiaohu
Jun YU,
author_facet JIANG, Liang
WANG, Xiaohu
Jun YU,
author_sort JIANG, Liang
title In-fill asymptotic theory for structural break point in autoregressions
title_short In-fill asymptotic theory for structural break point in autoregressions
title_full In-fill asymptotic theory for structural break point in autoregressions
title_fullStr In-fill asymptotic theory for structural break point in autoregressions
title_full_unstemmed In-fill asymptotic theory for structural break point in autoregressions
title_sort in-fill asymptotic theory for structural break point in autoregressions
publisher Institutional Knowledge at Singapore Management University
publishDate 2020
url https://ink.library.smu.edu.sg/soe_research/2433
https://ink.library.smu.edu.sg/context/soe_research/article/3432/viewcontent/In_fill_ER2020_av.pdf
_version_ 1770575489265565696