Nonignorable missing data, single index propensity score and profile synthetic distribution function
In missing data problems, missing not at random is difficult to handle since the response probability or propensity score is confounded with the outcome data model in the likelihood. Existing works often assume the propensity score is known up to a finite dimensional parameter. We relax this assumpt...
محفوظ في:
المؤلفون الرئيسيون: | CHEN, Xuerong, LEUNG, Denis H. Y., QIN, Jing |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2022
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/soe_research/2466 https://ink.library.smu.edu.sg/context/soe_research/article/3467/viewcontent/Nonignorable_Missing_Data_av.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
مواد مشابهة
-
Empirical Likelihood in Missing Data Problems
بواسطة: QIN, Jing, وآخرون
منشور في: (2009) -
Is using multiple imputation better than complete case analysis for estimating a prevalence (risk) difference in randomized controlled trials when binary outcome observations are missing?
بواسطة: Mukaka, Mavuto, وآخرون
منشور في: (2017) -
Analysing Survey Data with Incomplete Responses by Using a Method Based on Empirical Likelihood
بواسطة: Leung, Denis H. Y., وآخرون
منشور في: (2006) -
Semiparametric prevalence estimation from a two-phase survey
بواسطة: LEUNG, Denis H. Y., وآخرون
منشور في: (2009) -
Semiparametric maximum likelihood inference for nonignorable nonresponse with callbacks
بواسطة: GUAN, Zhong, وآخرون
منشور في: (2018)