Improving estimation efficiency via regression-adjustment in covariate-adaptive randomizations with imperfect compliance
We study how to improve efficiency via regression adjustments with additional covariates under covariate-adaptive randomizations (CARs) when subject compliance is imperfect. We first establish the semiparametric efficiency bound for the local average treatment effect (LATE) under CARs. Second, we de...
Saved in:
Main Authors: | , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2022
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/soe_research/2633 https://ink.library.smu.edu.sg/context/soe_research/article/3632/viewcontent/2201.13004.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.soe_research-3632 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.soe_research-36322022-11-29T06:38:38Z Improving estimation efficiency via regression-adjustment in covariate-adaptive randomizations with imperfect compliance JIANG, Liang LINTON, Oliver B. TANG, Haihan ZHANG, Yichong We study how to improve efficiency via regression adjustments with additional covariates under covariate-adaptive randomizations (CARs) when subject compliance is imperfect. We first establish the semiparametric efficiency bound for the local average treatment effect (LATE) under CARs. Second, we develop a general regression-adjusted LATE estimator which allows for parametric, nonparametric, and regularized adjustments. Even when the adjustments are misspecified, our proposed estimator is still consistent and asymptotically normal, and their inference method still achieves the exact asymptotic size under the null. When the adjustments are correctly specified, our estimator achieves the semiparametric efficiency bound. Third, we derive the optimal linear adjustment that leads to the smallest asymptotic variance among all linear adjustments. We then show the commonly used two stage least squares estimator is not optimal in the class of LATE estimators with linear adjustments while Ansel, Hong, and Li's (2018) estimator is. Fourth, we show how to construct a LATE estimator with nonlinear adjustments which is more efficient than those with the optimal linear adjustment. Fifth, we give conditions under which LATE estimators with nonparametric and regularized adjustments achieve the semiparametric efficiency bound. Last, simulation evidence and empirical application confirm efficiency gains achieved by regression adjustments relative to both the estimator without adjustment and the standard two-stage least squares estimator. 2022-01-01T08:00:00Z text application/pdf https://ink.library.smu.edu.sg/soe_research/2633 https://ink.library.smu.edu.sg/context/soe_research/article/3632/viewcontent/2201.13004.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Economics eng Institutional Knowledge at Singapore Management University Randomized experiment Covariate-adaptive randomization High-dimensional data Local average treatment effects Regression adjustment Econometrics |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Randomized experiment Covariate-adaptive randomization High-dimensional data Local average treatment effects Regression adjustment Econometrics |
spellingShingle |
Randomized experiment Covariate-adaptive randomization High-dimensional data Local average treatment effects Regression adjustment Econometrics JIANG, Liang LINTON, Oliver B. TANG, Haihan ZHANG, Yichong Improving estimation efficiency via regression-adjustment in covariate-adaptive randomizations with imperfect compliance |
description |
We study how to improve efficiency via regression adjustments with additional covariates under covariate-adaptive randomizations (CARs) when subject compliance is imperfect. We first establish the semiparametric efficiency bound for the local average treatment effect (LATE) under CARs. Second, we develop a general regression-adjusted LATE estimator which allows for parametric, nonparametric, and regularized adjustments. Even when the adjustments are misspecified, our proposed estimator is still consistent and asymptotically normal, and their inference method still achieves the exact asymptotic size under the null. When the adjustments are correctly specified, our estimator achieves the semiparametric efficiency bound. Third, we derive the optimal linear adjustment that leads to the smallest asymptotic variance among all linear adjustments. We then show the commonly used two stage least squares estimator is not optimal in the class of LATE estimators with linear adjustments while Ansel, Hong, and Li's (2018) estimator is. Fourth, we show how to construct a LATE estimator with nonlinear adjustments which is more efficient than those with the optimal linear adjustment. Fifth, we give conditions under which LATE estimators with nonparametric and regularized adjustments achieve the semiparametric efficiency bound. Last, simulation evidence and empirical application confirm efficiency gains achieved by regression adjustments relative to both the estimator without adjustment and the standard two-stage least squares estimator. |
format |
text |
author |
JIANG, Liang LINTON, Oliver B. TANG, Haihan ZHANG, Yichong |
author_facet |
JIANG, Liang LINTON, Oliver B. TANG, Haihan ZHANG, Yichong |
author_sort |
JIANG, Liang |
title |
Improving estimation efficiency via regression-adjustment in covariate-adaptive randomizations with imperfect compliance |
title_short |
Improving estimation efficiency via regression-adjustment in covariate-adaptive randomizations with imperfect compliance |
title_full |
Improving estimation efficiency via regression-adjustment in covariate-adaptive randomizations with imperfect compliance |
title_fullStr |
Improving estimation efficiency via regression-adjustment in covariate-adaptive randomizations with imperfect compliance |
title_full_unstemmed |
Improving estimation efficiency via regression-adjustment in covariate-adaptive randomizations with imperfect compliance |
title_sort |
improving estimation efficiency via regression-adjustment in covariate-adaptive randomizations with imperfect compliance |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2022 |
url |
https://ink.library.smu.edu.sg/soe_research/2633 https://ink.library.smu.edu.sg/context/soe_research/article/3632/viewcontent/2201.13004.pdf |
_version_ |
1770576362479812608 |