Bubble testing under polynomial trends
This paper develops the asymptotic theory of the least squares estimator of the autoregressive (AR) coefficient in an AR(1) regression with intercept when data is generated from a polynomial trend model in different forms. It is shown that the commonly used right-tailed unit root tests tend to favor...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2023
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/soe_research/2639 https://ink.library.smu.edu.sg/context/soe_research/article/3638/viewcontent/NegativeBubble24.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.soe_research-3638 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.soe_research-36382024-02-08T01:22:04Z Bubble testing under polynomial trends WANG, Xiaohu Jun YU, This paper develops the asymptotic theory of the least squares estimator of the autoregressive (AR) coefficient in an AR(1) regression with intercept when data is generated from a polynomial trend model in different forms. It is shown that the commonly used right-tailed unit root tests tend to favor the explosive alternative. A new procedure, which implements the right-tailed unit root tests in an AR(2) regression, is proposed. It is shown that when the data generating process has a polynomial trend, the test statistics based on the new procedure cannot find evidence of explosiveness. Whereas, when the data generating process is mildly explosive, the new procedure finds evidence of explosiveness. Hence, it enables robust bubble testing under polynomial trends. Empirical application of the proposed procedure using data from the U.S. real estate market reveals some interesting findings. In particular, all the negative bubble episodes flagged by the traditional method are no longer regarded as bubbles by the new procedure 2023-01-01T08:00:00Z text application/pdf https://ink.library.smu.edu.sg/soe_research/2639 info:doi/10.1093/ectj/utac020 https://ink.library.smu.edu.sg/context/soe_research/article/3638/viewcontent/NegativeBubble24.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Economics eng Institutional Knowledge at Singapore Management University Autoregressive regressions right-tailed unit root test mildly explosive processes polynomial trends coefficient-based statistic t statistic Econometrics Finance |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Autoregressive regressions right-tailed unit root test mildly explosive processes polynomial trends coefficient-based statistic t statistic Econometrics Finance |
spellingShingle |
Autoregressive regressions right-tailed unit root test mildly explosive processes polynomial trends coefficient-based statistic t statistic Econometrics Finance WANG, Xiaohu Jun YU, Bubble testing under polynomial trends |
description |
This paper develops the asymptotic theory of the least squares estimator of the autoregressive (AR) coefficient in an AR(1) regression with intercept when data is generated from a polynomial trend model in different forms. It is shown that the commonly used right-tailed unit root tests tend to favor the explosive alternative. A new procedure, which implements the right-tailed unit root tests in an AR(2) regression, is proposed. It is shown that when the data generating process has a polynomial trend, the test statistics based on the new procedure cannot find evidence of explosiveness. Whereas, when the data generating process is mildly explosive, the new procedure finds evidence of explosiveness. Hence, it enables robust bubble testing under polynomial trends. Empirical application of the proposed procedure using data from the U.S. real estate market reveals some interesting findings. In particular, all the negative bubble episodes flagged by the traditional method are no longer regarded as bubbles by the new procedure |
format |
text |
author |
WANG, Xiaohu Jun YU, |
author_facet |
WANG, Xiaohu Jun YU, |
author_sort |
WANG, Xiaohu |
title |
Bubble testing under polynomial trends |
title_short |
Bubble testing under polynomial trends |
title_full |
Bubble testing under polynomial trends |
title_fullStr |
Bubble testing under polynomial trends |
title_full_unstemmed |
Bubble testing under polynomial trends |
title_sort |
bubble testing under polynomial trends |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2023 |
url |
https://ink.library.smu.edu.sg/soe_research/2639 https://ink.library.smu.edu.sg/context/soe_research/article/3638/viewcontent/NegativeBubble24.pdf |
_version_ |
1794549517867024384 |