Maskin meets Abreu and Matsushima

The theory of full implementation has been criticized for using integer/modulo games, which admit no equilibrium (Jackson (1992)). To address the critique, we revisit the classical Nash implementation problem due to Maskin (1977, 1999) but allow for the use of lotteries and monetary transfers as in...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: CHEN, Yi-Chun, KUNIMOTO, Takashi, SUN, Yifei, XIONG, Siyang
التنسيق: text
اللغة:English
منشور في: Institutional Knowledge at Singapore Management University 2022
الموضوعات:
الوصول للمادة أونلاين:https://ink.library.smu.edu.sg/soe_research/2655
https://ink.library.smu.edu.sg/context/soe_research/article/3654/viewcontent/4255_35309_1_PB.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Singapore Management University
اللغة: English
الوصف
الملخص:The theory of full implementation has been criticized for using integer/modulo games, which admit no equilibrium (Jackson (1992)). To address the critique, we revisit the classical Nash implementation problem due to Maskin (1977, 1999) but allow for the use of lotteries and monetary transfers as in Abreu and Matsushima (1992, 1994). We unify the two well-established but somewhat orthogonal approaches in full implementation theory. We show that Maskin monotonicity is a necessary and sufficient condition for (exact) mixed-strategy Nash implementation by a finite mechanism. In contrast to previous papers, our approach possesses the following features: finite mechanisms (with no integer or modulo game) are used; mixed strategies are handled explicitly; neither undesirable outcomes nor transfers occur in equilibrium; the size of transfers can be made arbitrarily small; and our mechanism is robust to information perturbations.