Optimal zone for bandwidth selection in semiparametric models
We study the general problem of bandwidth selection in semiparametric regression. By expanding the higher-order terms in the Taylor series for the asymptotic mean-squared error, we provide a theoretical justification for the earlier empirical observations of an optimal zone of bandwidths in the lite...
Saved in:
Main Authors: | , , |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2011
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/soe_research_all/11 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |
總結: | We study the general problem of bandwidth selection in semiparametric regression. By expanding the higher-order terms in the Taylor series for the asymptotic mean-squared error, we provide a theoretical justification for the earlier empirical observations of an optimal zone of bandwidths in the literature. Based on the idea of cross-validating parametrical estimates, we further introduce a novel bandwidth selector for semiparametric models. The method is demonstrated by numerical studies to be able to preserve the selected bandwidth within the optimal zone. This data-driven cross-validation method may also be applicable for model diagnosis and longitudinal data settings. Examples from two clinical trials are provided to illustrate the applications. |
---|