A note on the monotonicity of the ES-algorithm

In the study of the robust nonparametric regression problem, Oh et al. [The role of pseudo data for robust smoothing with application to wavelet regression, Biometrika 94 (2007), pp. 893–904] developed and named the ES algorithm. In the event that the ES algorithm converges, the robust estimator can...

Full description

Saved in:
Bibliographic Details
Main Author: WU, Zhengxiao
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2011
Subjects:
Online Access:https://ink.library.smu.edu.sg/soe_research_all/13
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:In the study of the robust nonparametric regression problem, Oh et al. [The role of pseudo data for robust smoothing with application to wavelet regression, Biometrika 94 (2007), pp. 893–904] developed and named the ES algorithm. In the event that the ES algorithm converges, the robust estimator can be obtained through a sequence of conventional penalized least-squares estimates, the computation of which is fast and straightforward. However, the convergence of the ES algorithm was not established theoretically in Oh et al. In this note, we show that under a certain simple condition, the ES algorithm is monotonic. In particular, the ES algorithm does converge globally in the setting of Oh et al.